9英寸長(zhǎng)跡線的ADS模型,模仿了與相鄰被動(dòng)線的耦合,模型帶寬為~8GHz。所示為ADS中使用MIL結(jié)構(gòu)的兩條耦合傳輸線的簡(jiǎn)單模型。所有物理和材料屬性均進(jìn)行了參數(shù)配置,以便在以后進(jìn)行更改。我們假設(shè)兩條均勻等寬線的簡(jiǎn)單模型,有間距、長(zhǎng)度、電介質(zhì)的厚度、介電常數(shù)和耗散因素。我們使用千分尺從結(jié)構(gòu)上測(cè)得的各種幾何條件,并使用從均勻傳輸線測(cè)得的相同的介電常數(shù)和耗散因素。ADS中的集成2D場(chǎng)解算器會(huì)自動(dòng)用這些幾何值計(jì)算傳輸線的復(fù)合阻抗和傳輸特性,并模擬頻域插入損耗和回波損耗性能,與實(shí)際測(cè)量中的配置完全一樣。我們將TDR中測(cè)得的插入損耗數(shù)據(jù)以Touchstone格式帶入ADS,然后將測(cè)得的響應(yīng)與模擬響應(yīng)進(jìn)行比較。圖34所示為插入損失的幅度(單位為分貝)和插入損失的相位。紅色圓圈是測(cè)得的數(shù)據(jù),與TDR儀器屏幕的顯示相同。藍(lán)線是基于這個(gè)簡(jiǎn)單模型的模擬響應(yīng),沒(méi)有參數(shù)擬合。單根傳輸線的信號(hào)完整性問(wèn)題?數(shù)字信號(hào)信號(hào)完整性測(cè)試廠家現(xiàn)貨
1、什么是信號(hào)完整性“0”、“1”碼是通過(guò)電壓或電流波形來(lái)傳遞的,盡管信息是數(shù)字的,但承載這些信息的電壓或者電流波形確實(shí)模擬的,噪聲、損耗、供電的不穩(wěn)定等多種因素都會(huì)使電壓或者電流發(fā)生畸變,如果畸變嚴(yán)重到一定程度,接收器就可能錯(cuò)誤判斷發(fā)送器輸出的“0”、“1}碼,這就是信號(hào)完整性問(wèn)題。廣義上講,信號(hào)完整性(SignalIntegrity,SI)包括由于互連、電源、器件等引起的所有信號(hào)質(zhì)量及延時(shí)等問(wèn)題。
2、SI問(wèn)題的根源:頻率提高、上升時(shí)間減小、擺幅降低、互連通道不理想、供電環(huán)境惡劣、通道之間延時(shí)不一致等都可能導(dǎo)致信號(hào)完整性問(wèn)題;但其根源主要是信號(hào)上升時(shí)間減小。注:上升時(shí)間越小,信號(hào)包含的高頻成分就越多,高頻分量和通道間相互作用就可能使信號(hào)產(chǎn)生嚴(yán)重的畸變。 浙江信號(hào)完整性測(cè)試保養(yǎng)信號(hào)完整性測(cè)試總結(jié)及常見(jiàn)問(wèn)題;
改變兩條有插入損耗波谷影響的傳輸線之間的間距。虛擬實(shí)驗(yàn)之一是改變線間距。當(dāng)跡線靠近或遠(yuǎn)離時(shí),一條線的插入損耗上的諧振吸收波谷會(huì)出現(xiàn)什么情況?圖35所示為簡(jiǎn)單的兩條耦合線模型中一條線上模擬的插入損耗,間距分別為50、75、100、125和150密耳。紅色圓圈為單端跡線測(cè)得的插入損耗。每條線表示不同間距下插入損耗的模擬響應(yīng)。頻率諧振比較低的跡線間距為50密耳,之后是75密耳,排后是150密耳。隨著間距增加,諧振頻率也增加,這差不多與直覺(jué)相反。大多數(shù)諧振效應(yīng)的頻率會(huì)隨著尺寸增加而降低。然而,在這個(gè)效應(yīng)中,諧振頻率卻隨著尺寸和間距的增加而增加。要不是前文中我們已經(jīng)確認(rèn)模擬數(shù)據(jù)和實(shí)測(cè)數(shù)據(jù)之間非常一致,我們可能會(huì)對(duì)模擬結(jié)果產(chǎn)生懷疑。波谷顯然不是諧振效應(yīng),其起源非常微妙,但與遠(yuǎn)端串?dāng)_密切相關(guān)。在頻域中,當(dāng)正弦波進(jìn)入排前條線的前端時(shí),它會(huì)與第二條線耦合。在傳播中,所有的能量會(huì)在一個(gè)頻率點(diǎn)從排前條線耦合到相鄰線,導(dǎo)致排前條線上沒(méi)有任何能量,因此出現(xiàn)一個(gè)波谷。
一致性達(dá)到了驚人的約8GHz。這表明,沒(méi)有出現(xiàn)任何異常情況。沒(méi)有出現(xiàn)任何超出兩條耦合有損線正常行為的情況。在此例中,未被驅(qū)動(dòng)的第二條線端接了50歐姆電阻,而模型的設(shè)置也與之匹配。我們看到,當(dāng)一條單線用在一對(duì)線當(dāng)中時(shí),插入損耗上會(huì)出現(xiàn)反常的波谷,而當(dāng)這條單線被隔離時(shí),波谷并不會(huì)出現(xiàn)。通過(guò)場(chǎng)解算器我們證實(shí)了這一點(diǎn),是相鄰線的接近在某種程度上導(dǎo)致了波谷的產(chǎn)生。引起這種災(zāi)難性的行為效果并不反常,只是很微妙。我們可能花上幾個(gè)星期的時(shí)間在新的板子上陸續(xù)測(cè)試一個(gè)個(gè)效果,試圖找出影響此行為的原因。例如,我們可以改變耦合長(zhǎng)度、線寬、間距、電介質(zhì)厚度,甚至是介電常數(shù)和耗散因數(shù),來(lái)探尋是什么影響了諧振頻率。我們也可以使用如ADS這樣的仿真工具進(jìn)行同樣的虛擬實(shí)驗(yàn)。只有當(dāng)我們相信工具能準(zhǔn)確地預(yù)測(cè)這種行為時(shí),我們才可以用它來(lái)探索設(shè)計(jì)空間。信號(hào)完整性包含數(shù)字示波器,邏輯分析儀。
信號(hào)完整性和低功耗在蜂窩電話設(shè)計(jì)中是特別關(guān)鍵的考慮因素,EP諧波吸收裝置有助三階諧波頻率輕易通過(guò),并將失真和抖動(dòng)減小至幾乎檢測(cè)不到的水平。隨著集成電路輸出開(kāi)關(guān)速度提高以及PCB板密度增加,信號(hào)完整性已經(jīng)成為高速數(shù)字PCB設(shè)計(jì)必須關(guān)心的問(wèn)題之一。元器件和PCB板的參數(shù)、元器件在PCB板上的布局、高速信號(hào)的布線等因素,都會(huì)引起信號(hào)完整性問(wèn)題,導(dǎo)致系統(tǒng)工作不穩(wěn)定,甚至完全不工作。 如何在PCB板的設(shè)計(jì)過(guò)程中充分考慮到信號(hào)完整性的因素,并采取有效的控制措施,已經(jīng)成為當(dāng)今PCB設(shè)計(jì)業(yè)界中的一個(gè)熱門(mén)課題。信號(hào)完整性可能遇見(jiàn)的五類問(wèn)題?數(shù)字信號(hào)信號(hào)完整性測(cè)試廠家現(xiàn)貨
信號(hào)完整性測(cè)試有波形測(cè)試、眼圖測(cè)試、抖動(dòng)測(cè)試;數(shù)字信號(hào)信號(hào)完整性測(cè)試廠家現(xiàn)貨
3.沖擊響應(yīng)與階躍響應(yīng)以單位沖激信號(hào)作為激勵(lì),系統(tǒng)產(chǎn)生的零狀態(tài)響應(yīng)稱為單位沖擊響應(yīng)。以h(t)表示。以單位階躍信號(hào)u(t)作為激勵(lì),系統(tǒng)產(chǎn)生的零狀態(tài)響應(yīng),即為單位階躍響應(yīng)。以g(t)表示。4.卷積將信號(hào)分解為沖擊信號(hào)之和,借助系統(tǒng)沖擊響應(yīng),從而求解系統(tǒng)對(duì)任意激勵(lì)信號(hào)的零作態(tài)響應(yīng)。利用卷積求零狀態(tài)響應(yīng)的一般表達(dá)式:r(t)=e(t)*h(t)=h(t-)d卷積運(yùn)算步驟:a.改換圖形橫坐標(biāo)自變量,波形仍保持原狀,將t改寫(xiě)為把其中的一個(gè)信號(hào)反褶b.把反褶后的信號(hào)移位,移位量是t,這樣t是一個(gè)參量。在坐標(biāo)系中,t>0圖形右移,t<0圖形左移c.兩信號(hào)重疊部分相乘h(t-)d.完成相乘后圖形的積分5.卷積的性質(zhì):卷機(jī)代數(shù)(交換律、分配律、結(jié)合律),微分與積分沖激函數(shù)或階躍函數(shù)的卷積:沖激偶函數(shù):f(t)*=(t),階躍函數(shù):f(t)*=d數(shù)字信號(hào)信號(hào)完整性測(cè)試廠家現(xiàn)貨