微泡表面的電荷和配體可以用來增加靶向的特異性。Lindner等人發(fā)現(xiàn),由于與先天免疫系統(tǒng)的相互作用,陽離子微泡在經(jīng)歷缺血/再灌注和炎癥的組織的微循環(huán)中持續(xù)存在。然而,考慮到生物環(huán)境的復(fù)雜性,靜電相互作用通常沒有足夠的特異性。另一方面,配體-受體相互作用在生物介質(zhì)中產(chǎn)生高特異性。在這種情況下,微泡表面被配體裝飾,這些配體特異性地結(jié)合血管腔內(nèi)細胞上的受體。如上所述,脂質(zhì)聚合物是形成穩(wěn)定微泡所必需的。聚合物的存在需要配體和單層外殼之間的間隔物,以便配體詢問其在相對表面上的受體。通常情況下,配體被與周圍的鏈長度相等或更長的間隔劑拴在一起。這使配體比較大限度地暴露于生物環(huán)境中。旨在比較大限度地使配體暴露于靶組織的表面結(jié)構(gòu)也存在增加免疫原性化合物呈遞的風(fēng)險,從而導(dǎo)致早期顆粒***,或者更糟的是,產(chǎn)生超敏反應(yīng)。例如,有的實驗室的數(shù)據(jù)清楚地表明,存在于微泡上的生物素共軛脂聚合物***了人類和小鼠的補體系統(tǒng)。需要更多的研究來測試栓系抗體或肽配體是否也會引發(fā)免疫反應(yīng)。為了解釋免疫原性作用,Borden等人(47)表明,配體可以被聚合物覆蓋層掩蓋以提高循環(huán)半衰期,然后可以通過超聲輻射力局部顯示以與靶標(biāo)結(jié)合。超聲微泡有效地產(chǎn)生反向散射超聲,增強對比度,以便將目標(biāo)部位(血管)與周圍組織區(qū)分開來。納米超聲微泡血管
微泡表面選擇合適的偶聯(lián)化學(xué)和修飾順序取決于配體的類型。一個重要的考慮因素是配體的大小及其對生物利用度的影響。小的親水分子,如代謝物和肽,可以直接偶聯(lián)到聚合物間隔物上,而不會***影響聚合物動力學(xué)。相比之下,大的蛋白質(zhì)配體,如抗體,由于剪切應(yīng)力和涉及微泡分散的有機溶劑,容易變性。因此,抗體(~120 kDa)通常通過生物素-親和素連接連接到預(yù)形成的微泡表面。所得到的復(fù)合物更像一個剛性支架,而不是一個自由的聚合物鏈(50),配體與聚合物刷(~5 kDa)被大塊的親和素分子(~60 kDa)很好地分離。腦靶向超聲微泡制備超聲微泡造影劑的外殼是有脂質(zhì)組成的。
熒光標(biāo)記的靶向微泡在血管生成過程中的應(yīng)用。內(nèi)皮表面的許多內(nèi)皮標(biāo)記物被上調(diào),特別是αvβ3和血管內(nèi)皮生長因子(VEGF)受體。血管生成可以是*結(jié)生長的標(biāo)志,也可以作為***慢性缺血(例如骨骼肌)的***干預(yù)手段。監(jiān)測這些情況在臨床前動物研究和臨床中可能很重要。血管生成內(nèi)皮的分子成像可以通過針對αvβ3或蛇毒崩解素肽echistatin的抗體進行。方便的是,具有RGD基序的echistatin在多種動物模型中對αvβ3具有高親和力,而抗體通常是物種特異性的,不能用于多種動物模型。Echistatin微泡可用于通過超聲評估基質(zhì)模型和更現(xiàn)實的**環(huán)境中的血管發(fā)育;共聚焦顯微鏡**確認靶向微泡蓄積。用抗VEGF受體2抗體修飾的氣泡還可以檢測**區(qū)域的血管生成內(nèi)皮,甚至可以監(jiān)測******的進展。在血管生成的血管環(huán)境中,還有各種各樣的其他配體可用于微泡固定和靶向,如RRL肽、針對內(nèi)啡肽/CD105的抗體等??捎糜谄渌上穹绞降男》肿?多肽或模擬物)可以固定在泡殼上,以引導(dǎo)其到達αvβ3。
靶向超聲造影劑的一個潛在***應(yīng)用是用于基因***。腺病毒和質(zhì)粒報告基因的非特異性區(qū)域遞送已經(jīng)使用超聲定向方法完成。更具體地說,腺病毒或質(zhì)粒載體已被納入基于白蛋白的超聲造影劑中,并使用超聲遞送到心肌中以破壞靶區(qū)域的微泡。攜帶編碼VEGF的質(zhì)粒的微泡已被用于在超聲應(yīng)用后誘導(dǎo)大鼠心肌血管生成。然而,傳統(tǒng)的微球是帶負電荷的,對帶負電荷的RNA和DNA分子的細胞轉(zhuǎn)染效率較低。Tiukinhoy等人開發(fā)了一種帶正電的脂質(zhì)體,具有超聲可檢測的回聲特性。利用血管內(nèi)超聲系統(tǒng),他們能夠在icam-1靶向超聲定向基因轉(zhuǎn)染后,在HUVEC細胞中傳遞和檢測熒光素酶基因表達。DNA和微泡的孵育可導(dǎo)致DNA與外殼融合,從而促進共注射。早期的研究表明,通過靜脈注射白蛋白微泡,將質(zhì)粒DNA結(jié)合到外殼上,再加上超聲波,基因可以傳遞到心肌。隨后的研究開發(fā)了將DNA納入脂質(zhì)微泡殼的技術(shù),在靜脈注射和超聲后進行類似的局部轉(zhuǎn)染。雖然有使用靜脈注射成功轉(zhuǎn)染的報道,但一項比較靜脈注射和動脈注射含有微泡的質(zhì)粒的研究得出結(jié)論,動脈注射在實現(xiàn)局部組織轉(zhuǎn)染方面的效率是靜脈注射的200倍。超聲聯(lián)合納米微泡進行核酸輸送。
***斑塊的檢測對于*******的發(fā)病率和死亡率可能更為重要。由于潛在的炎癥,活性斑塊區(qū)域的內(nèi)皮細胞被***馬托雷過程;因此,內(nèi)皮細胞中這些位點上的VCAM-1和選擇素應(yīng)該被上調(diào),用抗VCAM-1靶向微泡和抗p-選擇素靶向或抗e -選擇素靶向泡進行分子成像可能是有用的。在這種情況下,可用的動物模型是高膽固醇飲食的apoE?/?小鼠。**近,研究人員利用抗vcam -1抗體修飾的生物素化微泡成功靶向了這類小鼠主動脈弓內(nèi)的斑塊。由于大多數(shù)單克隆抗體本身可能無法在快速流動條件下靶向微泡,因此在同一鏈霉親和素修飾的微泡上結(jié)合快速結(jié)合的生物素化SialylLewisx聚合物和緊密結(jié)合的生物素化抗vcam -1抗體可能會有所幫助。事實上,在高膽固醇飲食的apoE-/-小鼠中,這些配體組合的微泡靶向成功地在動脈血管區(qū)域積累,但在對照組小鼠中卻沒有,盡管有高剪切流量。熒光標(biāo)記的靶向微泡在血管生成過程中的應(yīng)用。西藏超聲微泡熒光
超聲微泡必須基于受體與配體之間的強親和力通過鼻內(nèi)注射和超聲應(yīng)用在計算機屏幕上清楚地觀察到生成的圖像。納米超聲微泡血管
超聲微泡可以通過各種制造方法來制造,這些方法已經(jīng)被引入和優(yōu)化,以獲得可復(fù)制的尺寸,生物相容性,生物降解性和高成像穩(wěn)定性的回聲特性。MNB的制造過程必須注重生物相容性和安全性,以免在體外和體內(nèi)階段測試時產(chǎn)生毒性。在制造階段,涂層配方將決定壽命,對刺激(如超聲波)的響應(yīng),并影響超聲微泡的自組裝尺寸。藥物裝載有幾種策略,例如將藥物和氣體封裝在**內(nèi),將藥物同化到**和外殼之間的層中,以及利用靜電相互作用。表面活性劑的加入,如Tween,可以維持超聲微泡的穩(wěn)定性,防止超聲微泡攜帶的藥物聚結(jié)。另一種藥物裝載方法是通過應(yīng)用靜電相互作用來幫助配體附著在超聲微泡外殼或基因遞送上。用超聲微泡遞送核酸也有助于延長其在血液中的循環(huán)時間,防止核酸的降解,并增強靶向藥物遞送的功效。為了獲得如上所述的所需體系,可以使用一些技術(shù)來生產(chǎn)超聲微泡,即超聲、乳化、機械攪拌、激光燒蝕、噴墨和逐層法。納米超聲微泡血管