即:聲音輸入一放大一感應(yīng)線圈電流一環(huán)繞線圈的電磁場一拾音線圈感應(yīng)電流一聲音輸出。這樣一來,聽障者可充分利用助聽器的T擋(拾音線圈,telecoil),在進(jìn)入預(yù)先鋪設(shè)有線圈的室內(nèi)時,通過電磁感應(yīng)原理,接收到清晰的聲音,而不受距離和人數(shù)的限制。在絕大多數(shù)耳背式及一部分耳內(nèi)式助聽器中,都裝配有感應(yīng)線圈,即助聽器上的T擋(拾音線圈,tele—coil)。當(dāng)助聽器的輸人選擇開關(guān)置于T擋,該線圈就可以拾取周圍的電磁信號并把它轉(zhuǎn)換成電信號進(jìn)行放大。這一設(shè)計的本意是幫助患者更好地接聽電話:感應(yīng)線圈從電話聽筒的電磁式耳機中拾取電磁信號,而不需由電話聽筒中的耳機把電信號轉(zhuǎn)換成聲信號,再由助聽器的麥克風(fēng)將其轉(zhuǎn)...
通過角位置來確定線性位置。在角位置定位系統(tǒng)中,正弦定向線圈112和余弦定向線圈110可以被布置為使得該角位置可以等于關(guān)于金屬目標(biāo)124的旋轉(zhuǎn)的金屬目標(biāo)124的實際角位置。重要的是要注意指示位置定位傳感器100的理想操作的以下條件。在那些條件中,發(fā)射器線圈106的形狀不重要,只要其覆蓋放置接收器線圈104的區(qū)域即可。此外,接收器線圈104的形狀等于完美的幾何重疊的正弦和余弦。另外,金屬目標(biāo)124的形狀對工作原理沒有影響,只要目標(biāo)的區(qū)域覆蓋接收器線圈104的總區(qū)域的一部分即可。理想的一組線圈和理想的金屬目標(biāo)的這些條件從未被滿足。在實際系統(tǒng)中,情況大不相同。非理想性導(dǎo)致金屬目標(biāo)124的位置的...
則算法700進(jìn)行到步驟712。在步驟712中,根據(jù)來自步驟704的仿真結(jié)果和步驟706中的比較來調(diào)整pcb上的線圈的設(shè)計,以提高終設(shè)計的線圈設(shè)計的準(zhǔn)確性。在一些實施例中,發(fā)射器線圈設(shè)計保持固定,作為步驟702中的輸入,并且調(diào)整接收器線圈設(shè)計和布局以提高準(zhǔn)確性。在一些實施例中,還可以調(diào)整發(fā)射器線圈以提高準(zhǔn)確性。圖7a中所示的算法700得到線圈設(shè)計,該線圈設(shè)計用于印刷在具有在步驟702中出現(xiàn)的規(guī)范輸入期間所指定的仿真準(zhǔn)確性的印刷電路板上。圖7b示出用于驗證線圈設(shè)計的算法720,該線圈設(shè)計可以是由圖7a中的算法700產(chǎn)生的線圈設(shè)計。如圖7b所示,在步驟722中輸入線圈設(shè)計。線圈設(shè)計可以是較舊...
利用所施加的線圈延伸,在步驟1208中,使用作用在線圈1316所有點上的適當(dāng)?shù)奈灰坪瘮?shù),使正弦形線圈1316沿y方向變形,如跡線1312。給定這些設(shè)置,在步驟1210中,算法計算通孔的位置。根據(jù)在步驟1202中指定的信息并且為了消除先前提到的信號失配,而建立通孔位置1308。每當(dāng)一個線圈中的通孔比另一個線圈中的通孔多或通孔以不平衡方式定位(即,不對稱)時,就會出現(xiàn)電壓失配。所導(dǎo)致的電壓失配是當(dāng)目標(biāo)移動時正弦信號相對于余弦信號的較大峰峰值幅度(反之亦然)。為了實現(xiàn)減少電壓失配的目標(biāo),通孔的設(shè)計方式是使sin(1316)rx線圈和cos(1318)rx線圈在pcb底部中的部分的長度相同。此外,通孔...
圖10f示出正在算法704中進(jìn)行仿真的位置定位系統(tǒng)設(shè)計中的接收器線圈1028和接收器線圈1026上方的金屬目標(biāo)1204的定位。為了討論的目的,圖10f示出圖8a和圖8b所示的線圈設(shè)計800的示例,其中接收器線圈1028和接收器線圈1026分別與接收器線圈804和接收器線圈806的跡線的一維近似相對應(yīng)。為了簡化圖示,在圖10f中未示出發(fā)射線圈802,但是發(fā)射線圈802的跡線也通過一維導(dǎo)線跡線近似。在仿真了來自位置定位系統(tǒng)800的目標(biāo)線圈802的電磁場之后,然后在圖10a所示的算法704的示例的步驟1008中,仿真金屬目標(biāo)1024的渦電流,并且確定從那些渦電流產(chǎn)生的電磁場。在一些實施例中,...
算法712計算不具有目標(biāo)時的偏差,并且在步驟1216中,如果不滿足小偏差標(biāo)準(zhǔn),則算法從步驟1208重新開始。當(dāng)達(dá)到小偏差時,算法進(jìn)行到步驟1218,評估電壓,如圖10a所示,然后計算理想位置和仿真的位置之間的大誤差。如果在步驟1220中沒有達(dá)到低的可能誤差,則算法返回到步驟1206,提供另一種配置。一旦獲得了當(dāng)前輸入的低誤差,算法就在返回步驟1226處結(jié)束。在一些實施例中,在不存在如圖13所示的阱的情況下,實現(xiàn)沒有目標(biāo)時的偏差的補償。無論如何,由于正弦形1316rx線圈和余弦形1318rx線圈的平衡延伸部1306和平衡延伸部1307,始終保證了設(shè)計對稱性。提供以上詳細(xì)描述是為了說明本發(fā)...
具體地,提出一種提供經(jīng)優(yōu)化的位置定位傳感器線圈設(shè)計的方法。該方法包括:接收線圈設(shè)計;利用該線圈設(shè)計對位置確定進(jìn)行仿真,以形成仿真性能;將仿真響應(yīng)與規(guī)范進(jìn)行比較以提供比較;以及基于仿真性能和性能規(guī)范之間的比較來修改線圈設(shè)計,以獲得更新的線圈設(shè)計。下文結(jié)合附圖討論這些和其他實施例。附圖說明圖1a和圖1b示出用于確定目標(biāo)的位置的線圈系統(tǒng)。圖2a、圖2b、圖2c、圖2d和圖2e示出在整個線圈系統(tǒng)上掃描金屬目標(biāo)時的接收器線圈的響應(yīng)。圖3a和圖3b示出線圈系統(tǒng)中的印刷電路板上的接收線圈的配置。圖3c示出由線圈系統(tǒng)中的發(fā)射線圈生成的電磁場的非均一性。圖3d和圖3e示出由線圈系統(tǒng)中的接收器線圈測量的場...
傳感器是一種檢測裝置,能感受到被測量的信息,并能將感受到的信息,按一定規(guī)律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。 按被測物理量劃分的傳感器,常見的有:溫度傳感器、濕度傳感器、壓力傳感器、位移傳感器、流量傳感器、液位傳感器、力傳感器、加速度傳感器、轉(zhuǎn)矩傳感器等。 無源傳感器不能直接轉(zhuǎn)換能量形式,但它能控制從另一輸入端輸入的能量或激勵能,傳感器承擔(dān)將某個對象或過程的特定特性轉(zhuǎn)換成數(shù)量的工作。 關(guān)于傳感器線圈的特點有哪些?原裝傳感器線圈芯 傳感器實際上是一種功能塊,其作用是將來自外界的各種信號轉(zhuǎn)換成電信號。 為了...
其執(zhí)行以下所有任務(wù):確定來自定位器404的金屬目標(biāo)408的實際位置、以及來自位置定位系統(tǒng)410上的線圈的金屬目標(biāo)408的測量位置;以及,確定來自位置定位系統(tǒng)410的測量位置的準(zhǔn)確性。如在圖4a中進(jìn)一步示出的,控制器402可以包括處理器412(其可以是處理器422中的處理器),處理器412驅(qū)動發(fā)射線圈并從接收線圈接收信號以及處理來自接收線圈的數(shù)據(jù)以便確定金屬目標(biāo)508相對于接收線圈的位置。處理器412可以通過接口424與諸如處理單元422之類的設(shè)備通信。此外,處理器412通過驅(qū)動器404驅(qū)動諸如發(fā)射線圈106之類的發(fā)射線圈。驅(qū)動器404可以包括諸如數(shù)模轉(zhuǎn)換器和放大器之類的電路,以向諸如發(fā)...
但可以提高速度。例如,如果每次仿真需要10秒鐘來完成,則使用100次迭代的優(yōu)化可能需要16分鐘。然而,如果每次仿真需要10分鐘完成,則同一優(yōu)化可能需要16個小時來完成。在一些實施例中使用的有效簡化是用一維導(dǎo)線模型來表示用于形成發(fā)射線圈和接收器線圈的導(dǎo)電跡線。在與一維導(dǎo)線模型偏離嚴(yán)重的情況下,考慮一個具有35μm的高度和。該矩形跡線可以由例如銅的任何非磁性導(dǎo)電材料形成。其他金屬也可以用來形成跡線,但銅更為典型。對于厚度為趨膚深度的大約兩倍的跡線部分,矩形跡線中流動的電流的電流密度可以是非常均勻的。對于銅,在5mhz的頻率下的趨膚深度為30μm。因此,對于上述基準(zhǔn)矩形跡線,跡線內(nèi)的電流密度...
當(dāng)有電流流過一根導(dǎo)線時,就會在這根導(dǎo)線的周圍產(chǎn)生一定的電磁場,而這個電磁場的導(dǎo)線本身又會對處在這個電磁場范圍內(nèi)的導(dǎo)線發(fā)生感應(yīng)作用。對產(chǎn)生電磁場的導(dǎo)線本身發(fā)生的作用,叫做“自感“,即導(dǎo)線自己產(chǎn)生的變化電流產(chǎn)生變化磁場,這個磁場又進(jìn)一步影響了導(dǎo)線中的電流;對處在這個電磁場范圍的其他導(dǎo)線產(chǎn)生的作用,叫做“互感“。電感線圈的電特性和電容器相反,“通低頻,阻高頻“。高頻信號通過電感線圈時會遇到很大的阻力,很難通過;而對低頻信號通過它時所呈現(xiàn)的阻力則比較小,即低頻信號可以較容易的通過它。電感線圈對直流電的電阻幾乎為零。電阻,電容和電感,他們對于電路中電信號的流動都會呈現(xiàn)一定的阻力,這種阻力我們稱之為“阻抗...
對產(chǎn)生電磁場的導(dǎo)線本身發(fā)生的作用,叫做“自感“,即導(dǎo)線自己產(chǎn)生的變化電流產(chǎn)生變化磁場,這個磁場又進(jìn)一步影響了導(dǎo)線中的電流;對處在這個電磁場范圍的其他導(dǎo)線產(chǎn)生的作用,叫做“互感“。電感線圈的電特性和電容器相反,“通低頻,阻高頻“。高頻信號通過電感線圈時會遇到很大的阻力,很難通過;而對低頻信號通過它時所呈現(xiàn)的阻力則比較小,即低頻信號可以較容易的通過它。電感線圈對直流電的電阻幾乎為零。電阻,電容和電感,他們對于電路中電信號的流動都會呈現(xiàn)一定的阻力,這種阻力我們稱之為“阻抗”。電感線圈對電流信號所呈現(xiàn)的阻抗利用的是線圈的自感。電感線圈有時我們把它簡稱為“電感”或“線圈”,用字母“L”表示。繞制電感線圈...
如圖1b所示,正弦定向線圈112和余弦定向線圈110共同位于發(fā)射線圈106內(nèi)。使用如圖1a所示的磁場108,正弦定向線圈112的環(huán)路114、環(huán)路116和環(huán)路118被定位為使得每個環(huán)路中的電壓之和抵消,從而使總vsin為0。如圖2a所示,在沒有金屬目標(biāo)124的情況下,環(huán)路114中的電壓vc可以被表示為1/2,環(huán)路116中的電壓(因為該環(huán)路中的電流與環(huán)路114和環(huán)路118中的電流相反)可以被表示為vd=-1,而環(huán)路118中的電壓可以表示為ve=1/2。因此,線圈112中的電壓為vsin=vc+vd+ve=0。因此,如果不存在金屬目標(biāo)124,則來自正弦定向線圈112的輸出信號將為0。類似地,...
在余弦定向線圈110中,環(huán)路120的一半被覆蓋,導(dǎo)致va=-1/2,并且環(huán)路122的一半被覆蓋,導(dǎo)致vb=1/2。因此,由va+vb給出的vcos為0。類似地,圖2c示出金屬目標(biāo)124相對于正弦定向線圈112和余弦定向線圈110處于180°位置。因此,正弦定向線圈112中的環(huán)路116和環(huán)路118的一半被金屬目標(biāo)124覆蓋,而余弦定向環(huán)路110中的環(huán)路122被金屬目標(biāo)124覆蓋。因此va=-1、vb=0、vc=1/2、vd=-1/2、以及ve=0。結(jié)果,vsin=0且vcos=-1。圖2d示出vcos和vsin相對于具有圖2a、圖2b和圖2c中提供的線圈拓?fù)涞慕饘倌繕?biāo)124的角位置的曲線圖。如圖...
為了討論的目的,圖10f示出圖8a和圖8b所示的線圈設(shè)計800的示例,其中線圈1028和線圈1026分別與線圈804和線圈806的跡線的一維近似相對應(yīng)。為了簡化圖示,在圖10f中未示出發(fā)射線圈802,但是發(fā)射線圈802的跡線也通過一維導(dǎo)線跡線近似。在仿真了來自位置定位系統(tǒng)800的目標(biāo)線圈802的電磁場之后,然后在圖10a所示的算法704的示例的步驟1008中,仿真金屬目標(biāo)1024的渦電流,并且確定從那些渦電流產(chǎn)生的電磁場。在一些實施例中,金屬目標(biāo)1024中的感應(yīng)渦電流是通過原始邊界積分公式來計算的。金屬目標(biāo)1024通常可以被建模為薄金屬片。通常,金屬目標(biāo)1024很薄,為35μm至70μm,而橫...
所述位置定位系統(tǒng)用于需要位置傳感器技術(shù)、扭矩、扭矩角傳感器(tas)的所有應(yīng)用以及使用感應(yīng)原理和在pcb上的接收器線圈的所有其他應(yīng)用。某些實施例的益處包括在兩個接收器上具有零偏差,這意味著達(dá)到理論極限零。從優(yōu)化線圈之前出現(xiàn)的%fs-3%fs的起點獲得%fs的誤差(提高6倍)可以實現(xiàn)。此外,如果誤差減小得足夠好,則不需要線性化方法或校準(zhǔn)方法。此外,可以減少用于產(chǎn)生可行的線圈設(shè)計的試錯的次數(shù),提供縮短的產(chǎn)品推向市場的時間。圖8a和圖8b示出pcb(為了清楚起見未示出)上的線圈布局800的示例,其可以用作如圖7a所示的算法700的輸入。在一些情況下,算法700將修改根據(jù)算法720所產(chǎn)生的經(jīng)優(yōu)...
說明創(chuàng)造性的方面和實施例的描述不應(yīng)被理解為進(jìn)行限制,而是由權(quán)利要求定義所保護(hù)的發(fā)明。在不脫離本說明和權(quán)利要求的精神和范圍的情況下,可以進(jìn)行各種改變。在一些實例中,為了不使本發(fā)明變得模糊,沒有詳細(xì)地示出或描述已知的結(jié)構(gòu)和技術(shù)。圖1a示出定位系統(tǒng)100。如圖1a所示,該定位系統(tǒng)包括發(fā)射/接收控制電路102,該發(fā)射/接收控制電路102被耦合,以驅(qū)動發(fā)射器線圈106和從接收線圈104接收信號。在大多數(shù)配置中,接收線圈104位于發(fā)射器線圈106之內(nèi),但是在圖1a中,為了清楚起見,它們被分開示出。接收線圈104通常物理上位于發(fā)射線圈106的邊界內(nèi)。本發(fā)明的實施例可以包括發(fā)射器線圈106、兩個接收器...
該位移使發(fā)射線圈106產(chǎn)生的磁場變形。來自位移330的雜散場在接收線圈104中產(chǎn)生不平衡。因此,將由于這些特征而產(chǎn)生位置確定的不準(zhǔn)確性。圖4a和圖4b示出可用于評估位置定位系統(tǒng)的校準(zhǔn)和測試設(shè)備400。由于諸如上文所述的那些之類的磁耦合原理的不理想性,可以使用校準(zhǔn)過程來校正目標(biāo)相對于定位設(shè)備的測量位置。此外,系統(tǒng)400可用于測試諸如上文所述的那些之類的定位系統(tǒng)的準(zhǔn)確性。圖4a示出示例系統(tǒng)400的框圖。如圖4a所示,金屬目標(biāo)408被安裝在平臺406上,使得在位置定位系統(tǒng)410上方。定位器404能夠以精確的方式相對于位置定位系統(tǒng)410移動平臺406。如上所述,位置定位系統(tǒng)410包括形成在pc...
步驟730可以針對其準(zhǔn)確性驗證在步驟724中執(zhí)行的仿真。在步驟732中,如果仿真與測量結(jié)果匹配,則算法720進(jìn)行到步驟734,在此線圈設(shè)計已經(jīng)被驗證。在步驟732中,如果仿真結(jié)果與物理測量結(jié)果不匹配,則算法720進(jìn)行到步驟736。在步驟736中,如果所執(zhí)行的算法720為對由算法700所產(chǎn)生的線圈設(shè)計的驗證,則修改算法700的輸入設(shè)計,并返回算法700。在一些實施例中,在步驟736中產(chǎn)生錯誤,指示仿真未正確地運行,因此仿真自身需要進(jìn)行調(diào)整以便更好地仿真特定位置定位系統(tǒng)中的所有非理想性。在那種情況下,步驟736也可以是模型校準(zhǔn)算法。因此,在本發(fā)明的一些實施例中,可以通過迭代地提供當(dāng)前線圈設(shè)...
步驟730可以針對其準(zhǔn)確性驗證在步驟724中執(zhí)行的仿真。在步驟732中,如果仿真與測量結(jié)果匹配,則算法720進(jìn)行到步驟734,在此線圈設(shè)計已經(jīng)被驗證。在步驟732中,如果仿真結(jié)果與物理測量結(jié)果不匹配,則算法720進(jìn)行到步驟736。在步驟736中,如果所執(zhí)行的算法720為對由算法700所產(chǎn)生的線圈設(shè)計的驗證,則修改算法700的輸入設(shè)計,并返回算法700。在一些實施例中,在步驟736中產(chǎn)生錯誤,指示仿真未正確地運行,因此仿真自身需要進(jìn)行調(diào)整以便更好地仿真特定位置定位系統(tǒng)中的所有非理想性。在那種情況下,步驟736也可以是模型校準(zhǔn)算法。因此,在本發(fā)明的一些實施例中,可以通過迭代地提供當(dāng)前線圈設(shè)...
此外,金屬目標(biāo)124和pcb之間的氣隙(ag)與位置確定的準(zhǔn)確性之間存在很強的相關(guān)性。此外,在理想情況下,正弦定向線圈112和余弦定向線圈110的拓?fù)涫抢硐氲娜呛瘮?shù),但是在實際設(shè)計中,這些線圈104不是理想的,并且具有若干個通孔,以允許通過使用pcb的兩面將跡線互相盤繞在pcb上。圖3a示出被定向在pcb(為清楚起見,圖3a中未示出)上的正弦定向線圈112。pcb被定位為使得形成正弦定向線圈112的跡線被定位在pcb的頂側(cè)和底側(cè)。在本公開中,對pcb的頂側(cè)或底側(cè)的引用指示pcb的相對側(cè),并且關(guān)于pcb的定向沒有其他含義。通常,位置定位系統(tǒng)被定位成使得pcb的頂側(cè)面向金屬目標(biāo)124的表...
為了簡化圖示,在圖10f中未示出發(fā)射線圈802,但是發(fā)射線圈802的跡線也通過一維導(dǎo)線跡線近似。在仿真了來自位置定位系統(tǒng)800的目標(biāo)線圈802的電磁場之后,然后在圖10a所示的算法704的示例的步驟1008中,仿真金屬目標(biāo)1024的渦電流,并且確定從那些渦電流產(chǎn)生的電磁場。在一些實施例中,金屬目標(biāo)1024中的感應(yīng)渦電流是通過原始邊界積分公式來計算的。金屬目標(biāo)1024通常可以被建模為薄金屬片。通常,金屬目標(biāo)1024很薄,為35μm至70μm,而橫向尺寸通常以毫米進(jìn)行測量。如上文關(guān)于導(dǎo)線跡線所討論的,當(dāng)導(dǎo)體具有小于在特定工作頻率下磁場的穿透深度的大約兩倍的厚度時,感應(yīng)電流密度在整個層厚度上基本上是...
如圖1b所示,正弦定向線圈112和余弦定向線圈110共同位于發(fā)射線圈106內(nèi)。使用如圖1a所示的磁場108,正弦定向線圈112的環(huán)路114、環(huán)路116和環(huán)路118被定位為使得每個環(huán)路中的電壓之和抵消,從而使總vsin為0。如圖2a所示,在沒有金屬目標(biāo)124的情況下,環(huán)路114中的電壓vc可以被表示為1/2,環(huán)路116中的電壓(因為該環(huán)路中的電流與環(huán)路114和環(huán)路118中的電流相反)可以被表示為vd=-1,而環(huán)路118中的電壓可以表示為ve=1/2。因此,線圈112中的電壓為vsin=vc+vd+ve=0。因此,如果不存在金屬目標(biāo)124,則來自正弦定向線圈112的輸出信號將為0。類似地,...
傳感器實際上是一種功能塊,其作用是將來自外界的各種信號轉(zhuǎn)換成電信號。 為了對各種各樣的信號進(jìn)行檢測、控制,就必須獲得盡量簡單易于處理的信號,這樣的要求只有電信號能夠滿足。電信號能較容易地進(jìn)行放大、反饋、濾波、微分、存貯、遠(yuǎn)距離操作等。 現(xiàn)代傳感器制造業(yè)的進(jìn)展取決于用于傳感器技術(shù)的新材料和敏感元件的開發(fā)強度。傳感器開發(fā)的基本趨勢是和半導(dǎo)體以及介質(zhì)材料的應(yīng)用密切關(guān)聯(lián)的。 制作傳感器線圈的材料是什么;汽車傳感器線圈直銷 隨著智能時代逐漸到來,傳感器變得更加不可替代。微型化、數(shù)字化、智能化的傳感器迅速地被普及,進(jìn)而改變我們的生活方式。近期,儀器儀表市場涌現(xiàn)出不少先進(jìn)的傳感器設(shè)備,刷新著...
圖10d示出導(dǎo)線1020的一維模型與基準(zhǔn)矩形跡線1022在距跡線中心1mm的距離處的差異。單個矩形跡線1022的表示可以通過單導(dǎo)線配置和多導(dǎo)線配置兩者來實現(xiàn)??梢钥闯?,該場與一維模型略有偏離。從圖10d可以看出,誤差不可忽略,但在兩種情況下,即使在1mm處,誤差也只有很小的分?jǐn)?shù)1%。由于接收線圈的大多數(shù)點相對于發(fā)射線圈的距離遠(yuǎn)大于1mm,因此1維導(dǎo)線模型在大多數(shù)應(yīng)用中可能就足夠了。也可以用三維塊狀元素來表示發(fā)射線圈,其中假定電流密度是均勻的。圖10e示出這種近似。如圖10e所示,這以適度的附加計算為代價將由發(fā)射線圈產(chǎn)生的磁場的建模誤差減小了一個數(shù)量級。因此,在步驟1006和步驟1010...
在圖1b所示的系統(tǒng)中,發(fā)射器線圈(tx)106被電路102(電路102可以是集成電路)激勵,以生成被示出為emf場108的可變電磁場(emf)。磁場108與接收器線圈(rx)104耦合。如圖1b所示,如果將導(dǎo)電金屬目標(biāo)124放置在接收器線圈104的上方,則會在金屬目標(biāo)124中生成渦電流。該渦電流生成新的電磁場,該電磁場理想情況下與場108相等并相反,從而抵消了在金屬目標(biāo)124正下方的接收器線圈104中的場。接收器線圈(rx)104捕獲由發(fā)射線圈106生成的可變emf場108和由金屬目標(biāo)124感應(yīng)的場,得到在接收器線圈104的端子處生成的正弦電壓。在沒有金屬目標(biāo)124的情況下,在rx線圈...
電渦流式傳感器的等效電路計算方法為:式中,R2為電渦流短路環(huán)等效電阻;h為電渦流的深度();ra為短路環(huán)的外徑;ri為短路環(huán)的內(nèi)徑。由基爾霍夫電壓定律有式中ω為線圈與金屬導(dǎo)體的互感系數(shù)。可得等效阻抗為式中Req為產(chǎn)生電渦流效應(yīng)后線圈的等效電阻,Leq為產(chǎn)生電渦流效應(yīng)后線圈的等效電感。由于電渦流的影響,線圈復(fù)阻抗的實部(等效電阻)增大、虛部(等效電感)減小。因此,線圈的等效品質(zhì)因數(shù)下降。電渦流式傳感器的等效電氣參數(shù)都是互感系數(shù)M2的函數(shù)。通常總是利用其等效電感的變化組成測量電路,因此,電渦流式傳感器屬于電感式(互感式)傳感器。三、測量電路用于電渦流傳感器的測量電路主要有調(diào)頻式,調(diào)幅式測量電路兩種...
電磁場范圍的其他導(dǎo)線產(chǎn)生的作用,叫做“互感“。電感線圈的電特性和電容器相反,“通低頻,阻高頻“。高頻信號通過電感線圈時會遇到很大的阻力,很難通過;而對低頻信號通過它時所呈現(xiàn)的阻力則比較小,即低頻信號可以較容易的通過它。電感線圈對直流電的電阻幾乎為零。電阻,電容和電感,他們對于電路中電信號的流動都會呈現(xiàn)一定的阻力,這種阻力我們稱之為“阻抗”。電感線圈對電流信號所呈現(xiàn)的阻抗利用的是線圈的自感。電感線圈有時我們把它簡稱為“電感”或“線圈”,用字母“L”表示。繞制電感線圈時,所繞的線圈的圈數(shù)我們一般把它稱為線圈的“匝數(shù)“。傳感器線圈推薦,無錫東英電子有限公司值得信賴,有需求的不要錯過哦!原裝傳感器線圈...
當(dāng)有電流流過一根導(dǎo)線時,就會在這根導(dǎo)線的周圍產(chǎn)生一定的電磁場,而這個電磁場的導(dǎo)線本身又會對處在這個電磁場范圍內(nèi)的導(dǎo)線發(fā)生感應(yīng)作用。對產(chǎn)生電磁場的導(dǎo)線本身發(fā)生的作用,叫做“自感“,即導(dǎo)線自己產(chǎn)生的變化電流產(chǎn)生變化磁場,這個磁場又進(jìn)一步影響了導(dǎo)線中的電流;對處在這個電磁場范圍的其他導(dǎo)線產(chǎn)生的作用,叫做“互感“。電感線圈的電特性和電容器相反,“通低頻,阻高頻“。高頻信號通過電感線圈時會遇到很大的阻力,很難通過;而對低頻信號通過它時所呈現(xiàn)的阻力則比較小,即低頻信號可以較容易的通過它。電感線圈對直流電的電阻幾乎為零。電阻,電容和電感,他們對于電路中電信號的流動都會呈現(xiàn)一定的阻力,這種阻力我們稱之為“阻抗...
這些步進(jìn)電機提供目標(biāo)的4軸運動,即x、v、z以及繞z軸的旋轉(zhuǎn)。這樣,如圖4b所示的系統(tǒng)400能夠沿包括z方向在內(nèi)的所有可能方向掃描位置定位器系統(tǒng)410中的接收二器線圈上方的金屬目標(biāo)408,以產(chǎn)生不同的氣隙。如前所述,氣隙是金屬目標(biāo)408與放置位置定位系統(tǒng)410的發(fā)射線圈和接收線圈的pcb之間的距離。這樣的系統(tǒng)可以用于位置定位器系統(tǒng)410的校準(zhǔn)、線性化和分析。圖4c示出在具有發(fā)射線圈106和接收線圈104的旋轉(zhuǎn)位置定位器系統(tǒng)410上方的金屬目標(biāo)408的掃描。如圖4c所示,金屬目標(biāo)408在接收器線圈104上方從0°掃描到θ°。圖4d示出當(dāng)如圖4c所示地掃描金屬目標(biāo)408時從接收器線圈104...