AIGC賦能服飾電商,助力降本增效AIGC可以為商家提供大量創(chuàng)意素材,電商廣告正是對創(chuàng)意營銷素材需求量很大的領(lǐng)域,阿里巴巴的AI設(shè)計師“魯班”就是應(yīng)用于此。除了通用型廣告,AIGC在電商服飾領(lǐng)域用途更多。一般說來,服飾領(lǐng)域都采用“小單快返”的模式,即先小批量生產(chǎn)多種樣式的服飾產(chǎn)品投入市場,快速獲取市場反饋,對精良產(chǎn)品加大投入,在試出爆款的同時減小庫存壓力。但這種方式對產(chǎn)品圖片的需求量很大,如果有上千種服飾產(chǎn)品分別找模特再牌照修圖,無疑會耗費極大的時間和成本。成立于2020年的ZMO公司就運用AIGC解決這個問題,商家只需在ZMO平臺上傳產(chǎn)品圖和模特圖就可以得到展示圖。借助AIGC,更多...
這是智能化研究者夢寐以求的東西。2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計算機學(xué)會“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無法擁有但計算機可以擁有的“能力”。從此,計算機不僅精于算,還會因精于算而精于創(chuàng)造。計算機學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計算機過于的操作能力,否則計算機真的有一天會“反捕”人類。當(dāng)回頭審視新方法的推演過程和數(shù)學(xué)的時候,作者拓展了對思維和數(shù)學(xué)的認(rèn)識。數(shù)學(xué)簡潔,清晰,可靠性、模式化強。在...
短視頻策劃:AIGC可以利用計算機數(shù)據(jù)算法和圖像處理技術(shù),自動生成短視頻拍攝的腳本,生成對應(yīng)的參考樣片,也可以從大量的素材中選取的片段,并進行自動剪輯和編輯,以快速生成吸引人的短視頻內(nèi)容。廣告創(chuàng)意:AIGC可以利用計算機視覺和圖像識別算法,分析大量的圖像和視頻數(shù)據(jù),從中提取特征并生成創(chuàng)意性的廣告內(nèi)容。它可以根據(jù)目標(biāo)受眾的喜好和需求,自動生成個性化的廣告,并優(yōu)化廣告投放效果。游戲設(shè)計:AIGC可以在游戲設(shè)計過程中發(fā)揮重要作用。它可以幫助游戲開發(fā)人員創(chuàng)建智能的虛擬角色和敵對AI,增強游戲的可玩性和挑戰(zhàn)性。同時,AIGC還可以分析玩家行為和反饋數(shù)據(jù),提供個性化的游戲體驗,優(yōu)化游戲關(guān)卡設(shè)計...
VisionTransformer(ViT)2020年由谷歌團隊提出,將Transformer應(yīng)用至圖像分類任務(wù),此后Transformer開始在CV領(lǐng)域大放異彩。ViT將圖片分為14*14的patch,并對每個patch進行線性變換得到固定長度的向量送入Transformer,后續(xù)與標(biāo)準(zhǔn)的Transformer處理方式相同。以ViT為基礎(chǔ)衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通過將人類先驗經(jīng)驗知識引入網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計,獲得了更快的收斂速度、更低的計算代價、更多的特征尺度、更強的泛化能力,能夠更好地學(xué)習(xí)和編碼數(shù)據(jù)中蘊含的知識,...
現(xiàn)代電子計算機的產(chǎn)生便是對人腦思維功能的模擬,是對人腦思維的信息過程的模擬。弱人工智能如今不斷地迅猛發(fā)展,尤其是2008年經(jīng)濟危機后,美日歐希望借機器人等實現(xiàn)再工業(yè)化,工業(yè)機器人以比以往任何時候更快的速度發(fā)展,更加帶動了弱人工智能和相關(guān)領(lǐng)域產(chǎn)業(yè)的不斷突破,很多必須用人來做的工作如今已經(jīng)能用機器人實現(xiàn)。而強人工智能則暫時處于瓶頸,還需要科學(xué)家們和人類的努力。用來研究人工智能的主要物質(zhì)基礎(chǔ)以及能夠?qū)崿F(xiàn)人工智能技術(shù)平臺的機器就是計算機,人工智能的發(fā)展歷史是和計算機科學(xué)技術(shù)的發(fā)展史聯(lián)系在一起的。除了計算機科學(xué)以外,人工智能還涉及信息論、控制論、自動化、仿生學(xué)、生物學(xué)、心理學(xué)、數(shù)理邏輯、語言...
AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓(xùn)練大模型搭建的基礎(chǔ)設(shè)施。由于開發(fā)預(yù)訓(xùn)練大模型技術(shù)門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機構(gòu)主導(dǎo)。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過受控的api接口收取調(diào)用費;另一種為基于基礎(chǔ)設(shè)施開發(fā)專業(yè)的軟件平臺收取費用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術(shù)進行改進、抽取或模型二次開發(fā)。該層為在大模型的基礎(chǔ)上開發(fā)的場景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場景中基于大模型抽...
智能數(shù)字內(nèi)容編輯:智能數(shù)字內(nèi)容編輯通過對內(nèi)容的理解以及屬性控制,進而實現(xiàn)對內(nèi)容的修改。如在計算機視覺領(lǐng)域,通過對視頻內(nèi)容的理解實現(xiàn)不同場景視頻片段的剪輯。通過人體部位檢測以及目標(biāo)衣服的變形控制與截斷處理,將目標(biāo)衣服覆蓋至人體部位,實現(xiàn)虛擬試衣。在語音信號處理領(lǐng)域,通過對音頻信號分析,實現(xiàn)人聲與背景聲分離。以上三個例子均在理解數(shù)字內(nèi)容的基礎(chǔ)上對內(nèi)容的編輯與控制。【應(yīng)用】:視頻場景剪輯、虛擬試衣、人聲分離等。3、智能數(shù)字內(nèi)容生成:智能數(shù)字內(nèi)容生成通過從海量數(shù)據(jù)中學(xué)習(xí)抽象概念,并通過概念的組合生成全新的內(nèi)容。如AI繪畫,從海量繪畫中學(xué)習(xí)作品不同筆法、內(nèi)容、藝術(shù)風(fēng)格,并基于學(xué)習(xí)內(nèi)容重新生成...
2022年2月28日,經(jīng)典美妝超級品類日活動開啟時,京東美妝虛擬主播“小美”就出現(xiàn)在蘭蔻、歐萊雅、OLAY等超過二十個美妝品牌直播間,開啟直播首秀。虛擬人不僅五官形象由AI合成,嘴型也可以利用AI精確匹配臺詞,動作靈活且流暢,營造出較好的真實感,為用戶帶來與真人無異的體驗。不過目前的虛擬主播更多的是與真人主播形成互補,或者為沒有直播能力的的商家提供服務(wù),還不能完全替代真人。虛擬主播要獲得更強的交互能力,更好的與觀眾互動,做出實時反饋,還需要AIGC相關(guān)技術(shù)的后續(xù)發(fā)展。3、AIGC+影視行業(yè)隨著虛擬技術(shù)的逐步到來,對影視內(nèi)容的需求也在爆發(fā)式增長。為了滿足觀眾日益刁鉆的口味和挑剔的眼光...
AIGC推動創(chuàng)意落地,突破表達(dá)瓶頸雖然AI能幫助人類更好的釋放創(chuàng)意,但從劇本到熒幕仍是一段漫長的距離。從創(chuàng)意到表達(dá)的跨越,AI可以保駕護航,幫助人類化不可能為可能。舉例來說,當(dāng)前勞動密集型的影視生產(chǎn)方式難以滿足觀眾對質(zhì)量日益提高的要求。2009年上映的《阿凡達(dá)》令全球觀眾旗艦了解3D電影的魅力,此后沉浸式觀影體驗成了影視產(chǎn)業(yè)鏈上共同的追求。為了滿足這種追求,影視特技與應(yīng)用呈現(xiàn)井噴式發(fā)展,但后期制作與渲染,復(fù)雜程度也都水漲船高,傳統(tǒng)的作業(yè)方式已經(jīng)難以為繼,而AI技術(shù)就有推動變革的潛力。從技術(shù)角度來說,影視特技行業(yè)的作業(yè)流程是極為繁瑣的,比如場景中的建模就需要從一草一木、一人一物開始,...
例如繁重的科學(xué)和工程計算本來是要人腦來承擔(dān)的,如今計算機不但能完成這種計算,而且能夠比人腦做得更快、更準(zhǔn)確,因此當(dāng)代人已不再把這種計算看作是“需要人類智能才能完成的復(fù)雜任務(wù)”,可見復(fù)雜工作的定義是隨著時代的發(fā)展和技術(shù)的進步而變化的,人工智能這門科學(xué)的具體目標(biāo)也自然隨著時代的變化而發(fā)展。它一方面不斷獲得新的進展,另一方面又轉(zhuǎn)向更有意義、更加困難的目標(biāo)。通常,“機器學(xué)習(xí)”的數(shù)學(xué)基礎(chǔ)是“統(tǒng)計學(xué)”、“信息論”和“控制論”。還包括其他非數(shù)學(xué)學(xué)科。這類“機器學(xué)習(xí)”對“經(jīng)驗”的依賴性很強。計算機需要不斷從解決一類問題的經(jīng)驗中獲取知識,學(xué)習(xí)策略,在遇到類似的問題時,運用經(jīng)驗知識解決問題并積累新的經(jīng)...
本詞條由“科普中國”科學(xué)百科詞條編寫與應(yīng)用工作項目審核。人工智能(ArtificialIntelligence),英文縮寫為AI。[24]它是研究、開發(fā)用于模擬、延伸和擴展人的智能的理論、方法、技術(shù)及應(yīng)用系統(tǒng)的一門新的技術(shù)科學(xué)。人工智能是新一輪科技革新和產(chǎn)業(yè)變革的重要驅(qū)動力量。[26]人工智能是智能學(xué)科重要的組成部分,它企圖了解智能的實質(zhì),并生產(chǎn)出一種新的能以人類智能相似的方式做出反應(yīng)的智能機器,該領(lǐng)域的研究包括機器人、語言識別、圖像識別、自然語言處理和行家系統(tǒng)等。人工智能從誕生以來,理論和技術(shù)日益成熟,應(yīng)用領(lǐng)域也不斷擴大,可以設(shè)想,未來人工智能帶來的科技產(chǎn)品,將會是人類智慧的“容...
VisionTransformer(ViT)2020年由谷歌團隊提出,將Transformer應(yīng)用至圖像分類任務(wù),此后Transformer開始在CV領(lǐng)域大放異彩。ViT將圖片分為14*14的patch,并對每個patch進行線性變換得到固定長度的向量送入Transformer,后續(xù)與標(biāo)準(zhǔn)的Transformer處理方式相同。以ViT為基礎(chǔ)衍生出了多重精良模型,如SwinTransformer,ViTAETransformer等。ViT通過將人類先驗經(jīng)驗知識引入網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計,獲得了更快的收斂速度、更低的計算代價、更多的特征尺度、更強的泛化能力,能夠更好地學(xué)習(xí)和編碼數(shù)據(jù)中蘊含的知識,...
大腦模擬主條目:控制論和計算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學(xué)和英國的RATIOCLUB舉行技術(shù)協(xié)會會議.直到1960,大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學(xué),斯坦福大學(xué)和麻省理工學(xué)院,而各自有孑立的研究風(fēng)格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法...
關(guān)于什么是“智能”,涉及到諸如意識(CONSCIOUSNESS)、自我(SELF)、思維(MIND)(包括無意識的思維(UNCONSCIOUS_MIND))等問題。人了解的智能是人本身的智能,這是普遍認(rèn)同的觀點。但是我們對我們自身智能的理解都非常有限,對構(gòu)成人的智能的必要元素也了解有限,所以就很難定義什么是人工智能。人工智能的研究往往涉及對人的智能本身的研究。其它關(guān)于動物或其它人造系統(tǒng)的智能也普遍被認(rèn)為是人工智能相關(guān)的研究課題。尼爾遜教授對人工智能下了這樣一個定義:“人工智能是關(guān)于知識的學(xué)科――怎樣表示知識以及怎樣獲得知識并使用知識的科學(xué)?!倍硪粋€美國麻省理工學(xué)院的溫斯頓教授認(rèn)為:“人工智能...
20世紀(jì)70年代以來,人工智能被稱為世界三大技術(shù)之一(空間技術(shù)、能源技術(shù)、人工智能)。也被認(rèn)為是21世紀(jì)三大技術(shù)(基因工程、納米科學(xué)、人工智能)之一。這是因為近三十年來它獲得了迅速的發(fā)展,在很多學(xué)科領(lǐng)域都獲得了廣泛應(yīng)用,并取得了豐碩的成果,人工智能已逐步成為一個孑立的分支,無論在理論和實踐上都已自成一個系統(tǒng)。人工智能是研究使用計算機來模擬人的某些思維過程和智能行為(如學(xué)習(xí)、推理、思考、規(guī)劃等)的學(xué)科,主要包括計算機實現(xiàn)智能的原理、制造類似于人腦智能的計算機,使計算機能實現(xiàn)更高層次的應(yīng)用。人工智能將涉及到計算機科學(xué)、心理學(xué)、哲學(xué)和語言學(xué)等學(xué)科??梢哉f幾乎是自然科學(xué)和社會科學(xué)的所有學(xué)科...
借助AIGC技術(shù),根據(jù)輸入的指令,自動生成符合要求的文章、項目文案、活動方案、新媒體運營策略以及短視頻拍攝腳本等。自動圖像生成:利用AIGC技術(shù),可以實現(xiàn)自動圖像生成,如風(fēng)景、建筑和角色設(shè)計,提高創(chuàng)作效率。智能角色表現(xiàn):使得虛擬角色能夠擁有智能的行為表現(xiàn),讓游戲和虛擬現(xiàn)實體驗更加生動逼真。自然語言處理:可以理解和處理自然語言,實現(xiàn)智能對話和語音識別。虛擬現(xiàn)實體驗:結(jié)合計算機圖形學(xué)技術(shù),創(chuàng)造出身臨其境的虛擬現(xiàn)實體驗,如虛擬旅游、虛擬培訓(xùn)和心理醫(yī)療等方面。AIGC應(yīng)用場景新聞報道:AIGC可以通過自然語言處理和機器學(xué)習(xí)技術(shù),幫助新聞機構(gòu)分析海量的新聞數(shù)據(jù),提供實時的信息監(jiān)測和事件預(yù)測能...
人工智能學(xué)科研究的主要內(nèi)容包括:知識表示、自動推理和搜索方法、機器學(xué)習(xí)和知識獲取、知識處理系統(tǒng)、自然語言理解、計算機視覺、智能機器人、自動程序設(shè)計等方面。研究方法如今沒有統(tǒng)一的原理或范式指導(dǎo)人工智能研究。許多問題上研究者都存在爭論。其中幾個長久以來仍沒有結(jié)論的問題是:是否應(yīng)從心理或神經(jīng)方面模擬人工智能?或者像鳥類生物學(xué)對于航空工程一樣,人類生物學(xué)對于人工智能研究是沒有關(guān)系的?智能行為能否用簡單的原則(如邏輯或優(yōu)化)來描述?還是必須解決大量完全無關(guān)的問題?智能是否可以使用高級符號表達(dá),如詞和想法?還是需要“子符號”的處理?JOHNHAUGELAND提出了GOFAI(出色的老式人工智能...
大腦模擬主條目:控制論和計算神經(jīng)科學(xué)20世紀(jì)40年代到50年代,許多研究者探索神經(jīng)病學(xué),信息理論及控制論之間的聯(lián)系。其中還造出一些使用電子網(wǎng)絡(luò)構(gòu)造的初步智能,如。這些研究者還經(jīng)常在普林斯頓大學(xué)和英國的RATIOCLUB舉行技術(shù)協(xié)會會議.直到1960,大部分人已經(jīng)放棄這個方法,盡管在80年代再次提出這些原理。符號處理主條目:GOFAI當(dāng)20世紀(jì)50年代,數(shù)字計算機研制成功,研究者開始探索人類智能是否能簡化成符號處理。研究主要集中在卡內(nèi)基梅隆大學(xué),斯坦福大學(xué)和麻省理工學(xué)院,而各自有孑立的研究風(fēng)格。JOHNHAUGELAND稱這些方法為GOFAI(出色的老式人工智能)。60年代,符號方法...
(1)采集環(huán)節(jié)借助語音識別技術(shù)將語音實時轉(zhuǎn)換為文本,壓縮稿件生產(chǎn)過程中的重復(fù)性工作,提高內(nèi)容生產(chǎn)效率。采用智能寫作機器人,提升新聞資訊寫作的時效性。(2)編輯環(huán)節(jié)采用AIGC技術(shù)對視頻畫質(zhì)修復(fù)與增強,提升視頻質(zhì)量。此外,可利用AIGC技術(shù)對視頻場景識別,實現(xiàn)智能視頻剪輯。如人民日報社利用“智能云剪輯師”并能夠?qū)崿F(xiàn)自動匹配字幕、人物實時追蹤與畫面抖動修復(fù)等功能。2022冬奧會期間,央視視頻通過AI智能內(nèi)容剪輯系統(tǒng),高效生產(chǎn)與發(fā)布冰雪項目視頻集錦內(nèi)容。(3)播報環(huán)節(jié)AI合成主播開創(chuàng)了新聞領(lǐng)域?qū)崟r語音及人物動畫合成的先河,只需要輸入所需要播發(fā)的文本內(nèi)容,計算機就會生成相應(yīng)的AI合成主播播...
AIGC的產(chǎn)品形態(tài)有哪些?1、基礎(chǔ)層(模型服務(wù))基礎(chǔ)層為采用預(yù)訓(xùn)練大模型搭建的基礎(chǔ)設(shè)施。由于開發(fā)預(yù)訓(xùn)練大模型技術(shù)門檻高、投入成本高,因此,該層主要由少數(shù)頭部企業(yè)或研發(fā)機構(gòu)主導(dǎo)。如谷歌、微軟、Meta、OpenAI、DeepMind、?;A(chǔ)層的產(chǎn)品形態(tài)主要包括兩種:一種為通過受控的api接口收取調(diào)用費;另一種為基于基礎(chǔ)設(shè)施開發(fā)專業(yè)的軟件平臺收取費用。2、中間層(2B)該層與基礎(chǔ)層的特別主要區(qū)別在于,中間層不具備開發(fā)大模型的能力,但是可基于開源大模型等開源技術(shù)進行改進、抽取或模型二次開發(fā)。該層為在大模型的基礎(chǔ)上開發(fā)的場景化、垂直化、定制化的應(yīng)用模型或工具。在AIGC的應(yīng)用場景中基于大模型抽...
AIGC+資訊行業(yè)在信息化時代,社會中充斥著各種資訊,同時這些資訊也有高標(biāo)準(zhǔn)、需求大、時效強等特點。自2014年起,AIGC已開始用于新聞資訊領(lǐng)域,因此資訊行業(yè)是AIGC商業(yè)化相對成熟的賽道。、AIGC輔助信息收集,打造堅實基礎(chǔ)精良的新聞產(chǎn)出必定需要全部、高效、準(zhǔn)確的信息收集與整理的基礎(chǔ)上。按照傳統(tǒng)的業(yè)模式,工作人員需要親臨現(xiàn)場,通過各種手段才能獲得足夠且扎實的信息?,F(xiàn)在的AI已經(jīng)能對該環(huán)節(jié)高效賦能,例如科大訊飛的AI轉(zhuǎn)寫工具可以幫助記者實時生成文稿,自動撰寫提綱、精簡語句等,進而提高工作效率,保證特別終產(chǎn)出的時效性。除幫助獲取一手信息外,AI也可以幫助精確檢索二手信息,收集素材。...
這是智能化研究者夢寐以求的東西。2013年,帝金數(shù)據(jù)普數(shù)中心數(shù)據(jù)研究員WANG開發(fā)了一種新的數(shù)據(jù)分析方法,該方法導(dǎo)出了研究函數(shù)性質(zhì)的新方法。作者發(fā)現(xiàn),新數(shù)據(jù)分析方法給計算機學(xué)會“創(chuàng)造”提供了一種方法。本質(zhì)上,這種方法為人的“創(chuàng)造力”的模式化提供了一種相當(dāng)有效的途徑。這種途徑是數(shù)學(xué)賦予的,是普通人無法擁有但計算機可以擁有的“能力”。從此,計算機不僅精于算,還會因精于算而精于創(chuàng)造。計算機學(xué)家們應(yīng)該斬釘截鐵地剝奪“精于創(chuàng)造”的計算機過于的操作能力,否則計算機真的有一天會“反捕”人類。當(dāng)回頭審視新方法的推演過程和數(shù)學(xué)的時候,作者拓展了對思維和數(shù)學(xué)的認(rèn)識。數(shù)學(xué)簡潔,清晰,可靠性、模式化強。在...
【應(yīng)用】:圖像生成(AI繪畫)、文本生成(AI寫作、ChatBot)、視頻生成、多模態(tài)生成等。從生成內(nèi)容層面AIGC可分為五個方面:1、文本生成基于NLP的文本內(nèi)容生成根據(jù)使用場景可分為非交互式與交互式文本生成。非交互式文本生成包括摘要/標(biāo)題生成、文本風(fēng)格遷移、文章生成、圖像生成文本等。交互式文本生成主要包括聊天機器人、文本交互游戲等?!敬硇援a(chǎn)品或模型】:JasperAI、、ChatGPT、Bard、AIdungeon等。2、圖像生成圖像生成根據(jù)使用場可分為圖像編輯修改與圖像自主生成。圖像編輯修改可應(yīng)用于圖像超分、圖像修復(fù)、人臉替換、圖像去水印、圖像背景去除等。圖像自主生成包括端...
2023年1月,微軟必應(yīng)搜索(MicrosoftBingSearch)推出了一項創(chuàng)新的功能,即聊天模式(ChatMode)。這項功能允許用戶通過聊天框與必應(yīng)搜索進行交互,獲取信息、娛樂、創(chuàng)意等各種內(nèi)容。必應(yīng)搜索利用了先進的自然語言處理(NLP)和生成技術(shù),能夠理解和回答用戶的各種問題和請求,同時提供相關(guān)的網(wǎng)頁搜索結(jié)果、建議、廣告等。必應(yīng)搜索還能夠根據(jù)用戶的選擇,切換不同的模式,如平衡模式(BalancedMode)、創(chuàng)意模式(CreativeMode)和精確模式(PreciseMode),以滿足用戶的不同需求和偏好。必應(yīng)搜索的聊天模式是AIGC領(lǐng)域的一個突破,展示了人工智能與人類交...
AIGC推動創(chuàng)意落地,突破表達(dá)瓶頸雖然AI能幫助人類更好的釋放創(chuàng)意,但從劇本到熒幕仍是一段漫長的距離。從創(chuàng)意到表達(dá)的跨越,AI可以保駕護航,幫助人類化不可能為可能。舉例來說,當(dāng)前勞動密集型的影視生產(chǎn)方式難以滿足觀眾對質(zhì)量日益提高的要求。2009年上映的《阿凡達(dá)》令全球觀眾旗艦了解3D電影的魅力,此后沉浸式觀影體驗成了影視產(chǎn)業(yè)鏈上共同的追求。為了滿足這種追求,影視特技與應(yīng)用呈現(xiàn)井噴式發(fā)展,但后期制作與渲染,復(fù)雜程度也都水漲船高,傳統(tǒng)的作業(yè)方式已經(jīng)難以為繼,而AI技術(shù)就有推動變革的潛力。從技術(shù)角度來說,影視特技行業(yè)的作業(yè)流程是極為繁瑣的,比如場景中的建模就需要從一草一木、一人一物開始,...
1956年夏季,以麥卡賽、明斯基、羅切斯特和申農(nóng)等為首的一批有遠(yuǎn)見卓識的年輕科學(xué)家在一起聚會,共同研究和探討用機器模擬智能的一系列有關(guān)問題,并提出了“人工智能”這一術(shù)語,它標(biāo)志著“人工智能”這門新興學(xué)科的正式誕生。IBM公司“深藍(lán)”電腦擊敗了人類的世界國際象棋旗艦更是人工智能技術(shù)的一個完美表現(xiàn)。從1956年正式提出人工智能學(xué)科算起,50多年來,取得長足的發(fā)展,成為一門普遍的交叉和前沿科學(xué)。總的說來,人工智能的目的就是讓計算機這臺機器能夠像人一樣思考。如果希望做出一臺能夠思考的機器,那就必須知道什么是思考,更進一步講就是什么是智慧。什么樣的機器才是智慧的呢?科學(xué)家已經(jīng)作出了汽車、火車...
隨著人工智能技術(shù)的不斷發(fā)展,AIGC(ArtificialIntelligenceGeneratedContent)已經(jīng)成為了我們生活中不可或缺的一部分。無論是在電商、辦公還是其他行業(yè)中,AIGC都可以幫助人們更高效地完成任務(wù),提高工作效率。在電商領(lǐng)域,AIGC可以生成商品標(biāo)題、描述、廣告文案和廣告圖等內(nèi)容,幫助企業(yè)更好地推廣產(chǎn)品。通過AIGC技術(shù),企業(yè)可以快速生成大量的精良內(nèi)容,提高商品的曝光率和銷售量。同時,AIGC還可以幫助企業(yè)更好地了解消費者的需求和喜好,從而更好地制定營銷策略。在辦公領(lǐng)域,AIGC可以幫助人們更輕松地完成各種任務(wù),如寫周報日報、寫方案、寫運營活動、制作PP...