所得六氟磷酸鋰溶液經(jīng)過(guò)濾除去不溶性雜質(zhì),濾液進(jìn)行攪拌晶析,***進(jìn)行干燥得到六氟磷酸鋰產(chǎn)品。北京航空航天大學(xué)楊樹(shù)斌團(tuán)隊(duì)開(kāi)發(fā)了3D打印友好型鋰鹽(氟化鋰,LiF)來(lái)構(gòu)建無(wú)枝晶鋰負(fù)極,具有長(zhǎng)周期壽命2000h和低過(guò)電位(約為18mV)。在負(fù)極側(cè),3D打印的LiF支架有利于形成富LiF的固態(tài)電解質(zhì)相層;鋰鎂合金能促進(jìn)鋰的均勻成核和生長(zhǎng)。相關(guān)結(jié)果以“3DPrintingLithiumSalttowardsDendrite-freeLithiumAnodes”為題發(fā)表在EnergyStorageMaterials期刊上。3D打印鋰鹽(LiF)可以被開(kāi)發(fā)用于構(gòu)建具有有序孔隙度的支架,可以方便地將鋰鎂合金滲...
中國(guó)在此領(lǐng)域一直處于**地位。2011年,中國(guó)就批準(zhǔn)了在甘肅省武威市建設(shè)一個(gè)釷熔鹽反應(yīng)堆的計(jì)劃,并要求中國(guó)科學(xué)家開(kāi)發(fā)運(yùn)行該反應(yīng)堆的技術(shù)。據(jù)悉,這個(gè)兩兆瓦的原型反應(yīng)堆將于下個(gè)月竣工,***次測(cè)試**早可能在9月份開(kāi)始。假如進(jìn)展順利,會(huì)在2030年建置***座商用反應(yīng)爐,目標(biāo)是在中國(guó)中部或西部沙漠和平原建設(shè)多個(gè)釷熔鹽反應(yīng)爐,也打算應(yīng)用于****。據(jù)了解,氟化鋰在增殖反應(yīng)堆中作載體,也用作中子屏蔽材料,在熔鹽反應(yīng)堆中用作溶劑。由于核反應(yīng)堆能夠在發(fā)電的同時(shí)產(chǎn)生極低的碳排放,因此在可持續(xù)的能源生產(chǎn)方面具有明顯的優(yōu)勢(shì)。但是,這項(xiàng)技術(shù)沒(méi)有在世界范圍內(nèi)得到***采用有著顯而易見(jiàn)的原因,其中許多原因都源于對(duì)鈾和...
氟化鋰的危險(xiǎn)性概述:健康危害:吸入、攝入或經(jīng)皮吸收會(huì)中毒。具刺激性。大劑量可引起眩暈、虛脫。對(duì)腎臟有損害。過(guò)量接觸引起唾液分泌增加、惡心、嘔吐、發(fā)燒、呼吸困難等;環(huán)境危害:對(duì)環(huán)境有危害,對(duì)水體可造成污染;燃爆危險(xiǎn):該品不燃,有毒,具刺激性。(2)氟化鋰的急救措施:皮膚接觸:立即脫去污染的衣著,用大量流動(dòng)清水沖洗。就醫(yī)。眼睛接觸:提起眼瞼,用流動(dòng)清水或生理鹽水沖洗。就醫(yī)。吸入:迅速脫離現(xiàn)場(chǎng)至空氣新鮮處。保持呼吸道通暢。如呼吸困難,給輸氧。如呼吸停止,立即進(jìn)行人工呼吸。就醫(yī)。食入:飲足量溫水,催吐、就醫(yī)。)氟化鋰的消防措施危險(xiǎn)特性:遇酸分解,放出腐蝕性的氟化氫氣體。遇高熱分解出高毒煙氣。有害燃燒產(chǎn)...
理論計(jì)算表明,γ-丁內(nèi)酯與LiNO3的配位更穩(wěn)定,并且靜電勢(shì)結(jié)果顯示負(fù)電荷局域在硝酸根上,使得硝酸根在γ-丁內(nèi)酯中類(lèi)似于解離的狀態(tài),與實(shí)驗(yàn)觀察到LiNO3在γ-丁內(nèi)酯內(nèi)具有較高的溶解度結(jié)果一致。同時(shí),電解液的拉曼光譜顯示大部分硝酸根與鋰離子形成緊密離子對(duì),說(shuō)明大部分硝酸根存在于鋰離子溶劑化結(jié)構(gòu)中,并且能夠隨著鋰離子遷移到負(fù)極;遷移到負(fù)極的硝酸根因其較高的還原電位優(yōu)先被還原,從而形成一層致密的固態(tài)電解質(zhì)層,能夠較好地抑制酯類(lèi)溶劑的分解。恒流鋰金屬沉積/剝離實(shí)驗(yàn)顯示含有γ-丁內(nèi)酯與LiNO3的電解液庫(kù)侖效率達(dá)到98.8%,同時(shí)使用高載量NMC333(2.8mAh/cm2)的鋰金屬電池在循環(huán)五十圈以...
共同通訊作者)等人在AngewandteChemieInternationalEdition上發(fā)文,題為:“High-TemperatureFormationofAFunctionalFilmatTheCathode/ElectrolyteInterfacesinLithium--SulfurBatteries:AnInSituAFMStudy”。研究人員探究了在高溫條件下鋰硫電池在LiFSI基電解液中的界面行為與反應(yīng)機(jī)制。通過(guò)電化學(xué)原子力顯微成像方法,研究人員在充放電過(guò)程中原位研究了不溶性Li2S2和Li2S在納米尺度下的動(dòng)態(tài)演化規(guī)律。研究發(fā)現(xiàn),在高溫60℃時(shí),正極/電解液界面在放電過(guò)程中會(huì)...
促進(jìn)鋰均勻沉積。鋰表面保護(hù)層還處于研究的初始階段,尤其是對(duì)于LiF與鋰錫合金間的相互作用的研究還很少報(bào)道。南達(dá)科他大學(xué)的YueZhou和美國(guó)陸軍實(shí)驗(yàn)室的徐康共同報(bào)道了一種復(fù)合人工SEI膜用于鋰負(fù)極保護(hù)的研究。作者通過(guò)簡(jiǎn)單的將氟化錫溶液均勻涂于鋰片表面,原位合成得到了由氟化鋰和鋰錫合金組成的界面層。其中,氟化鋰可以提升界面的離子電導(dǎo)率,穩(wěn)定的鋰錫合金可以降低界面的阻抗,證實(shí)了兩者的協(xié)同作用共同,促進(jìn)了無(wú)枝晶鋰的沉積和循環(huán)。該成果“Fluorinatedhybridsolid-electrolyte-interphasefordendrite-freelithiumdeposition”發(fā)表在國(guó)際...
含有保護(hù)層的金屬鋰可以移植到不含任何負(fù)極保護(hù)劑、添加劑的電解液中穩(wěn)定利用,抑制鋰枝晶的形成和生長(zhǎng),從而提高負(fù)極的利用率。當(dāng)采用硫或者三元氧化物正極材料,分別在醚類(lèi)或碳酸酯類(lèi)電解液中與上述帶有固態(tài)電解質(zhì)界面膜的金屬鋰結(jié)合,固態(tài)電解質(zhì)保護(hù)膜可以移植到新體系的電池中抑制金屬鋰枝晶的生長(zhǎng),成功實(shí)現(xiàn)了高能量密度高穩(wěn)定性的鋰硫電池、鋰金屬電池的有效構(gòu)筑。實(shí)用條件下,高比能量金屬鋰電池需要同時(shí)滿(mǎn)足高電壓正極(如:NCM811),有限的負(fù)極正極比(N/Pratio)以及有限的電解液正極比(E/Cratio)。這就要求金屬鋰表面形成穩(wěn)定的固體電解質(zhì)膜(SEI)。氟化鋰如與眼睛接觸,需提起眼瞼,用流動(dòng)清水或生理鹽...
黃佳琦研究員課題組通過(guò)引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1.0wt%硝酸鋰添加劑的溶解,整個(gè)溶液的顏色變化明顯:?jiǎn)为?dú)的硝酸鋰和單獨(dú)的氟化銅試劑在酯類(lèi)電解液中均無(wú)法溶解;當(dāng)兩者共同加入溶液后,沉淀完全消失,并且呈現(xiàn)藍(lán)色。該藍(lán)色溶液的出現(xiàn),是因?yàn)楫a(chǎn)生了可溶解的銅離子絡(luò)合物。硝酸鋰(LiNO3)作為鋰硫電池電解液的添加劑,在抑制多硫化物的“穿梭效應(yīng)”和保護(hù)金屬鋰負(fù)極上發(fā)揮了重要作用。鋰硫電池電解液體系多為醚類(lèi)體系,而醚類(lèi)體系因其窄的電化學(xué)窗口無(wú)法使用到高壓電池中(>4.3V),酯類(lèi)電解液體系能夠承受4.3V及以上電壓。黃佳琦研究員課題組通過(guò)引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1...
應(yīng)用慢掃描循環(huán)伏安法研究磷酸鐵鋰化合物在水溶液體系中的電極過(guò)程,并通過(guò)交流阻抗法探討了其在不同電位條件下的脫嵌鋰過(guò)程。對(duì)不同頻率區(qū)域的電化學(xué)行為進(jìn)行分析表明,高頻圓弧歸屬于體相電阻和電容;中低頻區(qū)的半圓反映了Li+在電解液和活性物質(zhì)界面發(fā)生的電荷轉(zhuǎn)移;低頻區(qū)部分的斜線說(shuō)明了鋰離子在電極材料內(nèi)部的擴(kuò)散行為。提出了等效電路模型,并以此對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合。在此基礎(chǔ)上分析了磷酸鐵鋰在飽和硝酸鋰溶液中的電極反應(yīng)機(jī)理。磷肥副產(chǎn)氟硅酸鈉生產(chǎn)的氟化鈉制備工業(yè)級(jí)氟化鋰。北京單水硫酸鋰采購(gòu)并且在應(yīng)力波到達(dá)樣品自由表面之前滑移速率增加、塑性變形集中寬度減小,與單晶的動(dòng)態(tài)變形趨勢(shì)一致;晶粒之間的取向差是LiF多晶變...
方程式:LiF+HF→LiHF2;急性毒性:LD50:200mg/kg(豚鼠經(jīng)口)。具刺激性。吸入、攝入或經(jīng)皮吸收會(huì)中毒。大劑量可引起眩暈、虛脫。對(duì)腎臟有損害;該品有毒,吸入或與皮膚接觸時(shí)有毒害。對(duì)水是稍微危害的,若無(wú)**許可,勿將材料排入周?chē)h(huán)境??膳c氫氟酸生成Li2HF酸式鹽。與氫氟酸生成LiHF2結(jié)晶,與氫氧化鋰水溶液即生成LiOH·LiF。氟化鋰的應(yīng)用:在陶瓷工業(yè)中,用于降低窯溫和改進(jìn)耐熱沖擊性、磨損性和酸腐蝕性。與其他氟化物、氯化物和硼酸鹽一起作金屬焊接的助熔劑。是氟電解槽電解質(zhì)基本組分。在高溫蓄電池中以熔融態(tài)作電解質(zhì)組分。在增殖反應(yīng)堆中作載體。大量用于鋁、鎂合金的焊劑和釬劑中也用作...
累計(jì)暴漲幅度超過(guò)380%。從中國(guó)六氟磷酸鋰市場(chǎng)價(jià)格走勢(shì)來(lái)看,六氟磷酸鋰的價(jià)格暴漲從2020年12月份開(kāi)始,至2021年4月份開(kāi)始加速上漲?,F(xiàn)中國(guó)六氟磷酸鋰平均價(jià)格在,部分企業(yè)報(bào)價(jià)已經(jīng)上漲至39-40萬(wàn)元/噸水平。碳酸鋰和氫氟酸生產(chǎn)的氟化鋰,在后續(xù)的生產(chǎn)中占到六氟磷酸鋰成本的62%左右,是六氟磷酸鋰比較大生產(chǎn)成本占比因素,氟化鋰的價(jià)格波動(dòng)對(duì)六氟磷酸鋰的成本將有**為直接的影響,而碳酸鋰的價(jià)格波動(dòng)對(duì)氟化鋰又將造成直接影響,間接可以得到碳酸鋰對(duì)六氟磷酸鋰的價(jià)格波動(dòng)將有較大影響。氟化鋰是由碳酸鋰加入氫氟酸,通過(guò)中和反應(yīng)析出工業(yè)級(jí)氟化鋰,再經(jīng)過(guò)提純和干燥得到電池級(jí)氟化鋰產(chǎn)品,而碳酸鋰同時(shí)也作為鋰離子電池...
并且在應(yīng)力波到達(dá)樣品自由表面之前滑移速率增加、塑性變形集中寬度減小,與單晶的動(dòng)態(tài)變形趨勢(shì)一致;晶粒之間的取向差是LiF多晶變形不均勻的主要原因,晶界是變形集中的主要區(qū)域;提高沖擊壓力或加壓速率對(duì)多晶樣品進(jìn)行加載,應(yīng)力波剖面上具有彈塑性波寬度減小、變形集中區(qū)域邊界平滑性增加以及應(yīng)力波已通過(guò)區(qū)域應(yīng)力分布均勻性提高的特點(diǎn)。一種氟化鋰的回收裝置,包括:氟化氫管路:具有依次連接的氟化氫氣源、冷凝器、溶解分離器和氧化鈣吸收器;氟化氫氣源與冷凝器之間通過(guò)氟化氫氣路連通;冷凝器與溶解分離器之間通過(guò)氟化氫液路連通;溶解分離器與氧化鈣吸收器之間通過(guò)平衡管路連通;氟化氫氣路上游的惰性氣體源,通過(guò)吹掃支路與氟化氫氣路...
以LiF包覆的石墨為基體,有效改變了鋰金屬的生長(zhǎng)方式,使其成為無(wú)枝晶的大晶粒,表面光滑,結(jié)構(gòu)致密。因此,MCMB-F2負(fù)極在用作鋰金屬負(fù)極時(shí),比較大限度地減少了電解液的消耗和Li的損耗。25次循環(huán)內(nèi)的高鋰電鍍/剝離CE達(dá)到。這種無(wú)枝晶鋰金屬負(fù)極具有很高的可逆性。SEI的性質(zhì)與非質(zhì)子電解質(zhì)中鋰金屬的表面狀態(tài)密切相關(guān)。避免樹(shù)枝狀晶體生長(zhǎng)的關(guān)鍵是通過(guò)改變電解質(zhì)配方等途徑構(gòu)建堅(jiān)固的SEI。**近,研究人員致力于通過(guò)使用氟化溶劑和高濃度鋰鹽,調(diào)控SEI的組成和結(jié)構(gòu)。研究者發(fā)現(xiàn)SEI中的LiF可以抑制樹(shù)枝狀Li的生長(zhǎng)。作為優(yōu)良的電子絕緣體,LiF可以阻止電子隧穿,從而防止電解質(zhì)大量分解。此外,LiF具有較...
氟化鋰的應(yīng)用:(1)在陶瓷工業(yè)中,用于降低窯溫和改進(jìn)耐熱沖擊性、磨損性和酸腐蝕性。(2)與其他氟化物、氯化物和硼酸鹽一起作金屬焊接的助熔劑。是氟電解槽電解質(zhì)基本組分。(3)在高溫蓄電池中以熔融態(tài)作電解質(zhì)組分。(4)在增殖反應(yīng)堆中作載體。(5)大量用于鋁、鎂合金的焊劑和釬劑中也用作電解鋁工業(yè)中提高電效的添加劑;在原子能工業(yè)中用作中子屏蔽材料,熔鹽反應(yīng)堆中用作溶劑;在光學(xué)材料中用作紫外線的透明窗(透過(guò)率77-88%)。氟化鋰的制備:1、將固體碳酸鋰加入氟化氫溶液中,使之反應(yīng)析出LiF結(jié)晶,經(jīng)過(guò)濾,干燥即得產(chǎn)品。有中和法和復(fù)分解法兩種方法。工業(yè)生產(chǎn)多采用中和法。中和法是以碳酸鋰或氫氧化鋰與氫氟酸反應(yīng)...
醚類(lèi)電解液中,當(dāng)存在硝酸鋰的情況下金屬鋰沉積的庫(kù)倫效率可以高達(dá)98.5%。而酯類(lèi)電解液中,金屬鋰沉積的效率*有70%左右。這表明醚類(lèi)電解液中所形成的SEI膜是優(yōu)異且穩(wěn)定的SEI膜,而酯類(lèi)電解液中的SEI膜則不穩(wěn)定容易破裂。因此,大多數(shù)金屬鋰沉積的研究都是在醚類(lèi)電解液中進(jìn)行的。但是,醚類(lèi)電解液的電壓窗口往往般都低于4V。因此,醚類(lèi)電解液中所配的金屬鋰全電池都是對(duì)磷酸鐵鋰(LFP)或者鈦酸鋰(LTO)正極。而這樣的金屬鋰全電池的能量密度甚至不如傳統(tǒng)的鋰離子電池。通過(guò)醋酸鋰法轉(zhuǎn)入酵母宿主HIS-/GS115細(xì)胞中,然后在含不同濃度G418的YPD平板上篩選陽(yáng)性克隆。河北無(wú)水氫氧化鋰采購(gòu)采用充放電測(cè)試...
利用硼酸與鋰表面的氧化物或氫氧化物形成O-B-O或B-O-B共價(jià)鍵結(jié)構(gòu)的特性,在鋰表面原位生長(zhǎng)一層致密結(jié)構(gòu)的SEI膜,該SEI膜主要由硼酸鋰,氟化鋰和碳酸鋰等納米顆粒分布于無(wú)定型的有機(jī)膜中構(gòu)成,具有一定的隔水性和導(dǎo)離子性;此外,透射電鏡觀察可看出該SEI膜能夠以自支撐的形式存在于碳纖維的表面,具有一定的機(jī)械性能。所得SEI膜應(yīng)用于鋰的對(duì)稱(chēng)電池中,能夠穩(wěn)定循環(huán)200多圈(0.25mA/cm2的電流密度,0.5mAh/cm2的容量)。用于鋰氧氣電池時(shí),循環(huán)壽命是使用普通電解液電池的6倍左右。一個(gè)可充電的鋰金屬負(fù)極與一個(gè)高電壓正極相結(jié)合,是一種實(shí)現(xiàn)高能量密度電池的有效途徑。浙江大學(xué)陸盈盈研究員課題組...
應(yīng)用慢掃描循環(huán)伏安法研究磷酸鐵鋰化合物在水溶液體系中的電極過(guò)程,并通過(guò)交流阻抗法探討了其在不同電位條件下的脫嵌鋰過(guò)程。對(duì)不同頻率區(qū)域的電化學(xué)行為進(jìn)行分析表明,高頻圓弧歸屬于體相電阻和電容;中低頻區(qū)的半圓反映了Li+在電解液和活性物質(zhì)界面發(fā)生的電荷轉(zhuǎn)移;低頻區(qū)部分的斜線說(shuō)明了鋰離子在電極材料內(nèi)部的擴(kuò)散行為。提出了等效電路模型,并以此對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了擬合。在此基礎(chǔ)上分析了磷酸鐵鋰在飽和硝酸鋰溶液中的電極反應(yīng)機(jī)理。用醋酸鋰法轉(zhuǎn)化巴氏畢赤酵母表達(dá)人**蛋白聚糖。山西無(wú)水硝酸鋰生產(chǎn)廠家通過(guò)更換脫模劑后,金鍋整形由原來(lái)的三個(gè)多月延長(zhǎng)至1年,節(jié)省了氧化劑硝酸鋰的使用量,可節(jié)約整形費(fèi)用約3萬(wàn)元,降低了員工的勞...
硫化鋰的加入可***增加界面處氟化鋰組分,以提升界面的穩(wěn)定性和離子傳導(dǎo)性,被證明可***改善鋰/PEO界面。**辨圖像和X射線光電子譜的SnapMaps分析證實(shí)界面處氟化鋰納米晶的富集,歸因于硫化鋰可以促進(jìn)LiTFSI分解成氟化鋰。進(jìn)一步分析發(fā)現(xiàn),氟化鋰納米晶可以有效的增加離子擴(kuò)散性能,抑制碳-氧鍵的斷鍵,并阻止鋰和PEO的持續(xù)副反應(yīng)?;谠蛹?jí)別觀測(cè)引導(dǎo)的界面設(shè)計(jì),鋰-鋰半電池可穩(wěn)定循環(huán)超過(guò)1800小時(shí),鋰-磷酸鐵鋰和鋰-三元鎳鈷錳全電池具有更優(yōu)異的電化學(xué)性能。解決了鋰/電解質(zhì)界面原子觀測(cè)的挑戰(zhàn),對(duì)于構(gòu)建穩(wěn)定的界面和高性能的全固態(tài)鋰電池具有重要的參考意義。氟化鋰的操作注意事項(xiàng):密閉操作,局部...
促進(jìn)鋰均勻沉積。鋰表面保護(hù)層還處于研究的初始階段,尤其是對(duì)于LiF與鋰錫合金間的相互作用的研究還很少報(bào)道。南達(dá)科他大學(xué)的YueZhou和美國(guó)陸軍實(shí)驗(yàn)室的徐康共同報(bào)道了一種復(fù)合人工SEI膜用于鋰負(fù)極保護(hù)的研究。作者通過(guò)簡(jiǎn)單的將氟化錫溶液均勻涂于鋰片表面,原位合成得到了由氟化鋰和鋰錫合金組成的界面層。其中,氟化鋰可以提升界面的離子電導(dǎo)率,穩(wěn)定的鋰錫合金可以降低界面的阻抗,證實(shí)了兩者的協(xié)同作用共同,促進(jìn)了無(wú)枝晶鋰的沉積和循環(huán)。該成果“Fluorinatedhybridsolid-electrolyte-interphasefordendrite-freelithiumdeposition”發(fā)表在國(guó)際...
理論計(jì)算表明,γ-丁內(nèi)酯與LiNO3的配位更穩(wěn)定,并且靜電勢(shì)結(jié)果顯示負(fù)電荷局域在硝酸根上,使得硝酸根在γ-丁內(nèi)酯中類(lèi)似于解離的狀態(tài),與實(shí)驗(yàn)觀察到LiNO3在γ-丁內(nèi)酯內(nèi)具有較高的溶解度結(jié)果一致。同時(shí),電解液的拉曼光譜顯示大部分硝酸根與鋰離子形成緊密離子對(duì),說(shuō)明大部分硝酸根存在于鋰離子溶劑化結(jié)構(gòu)中,并且能夠隨著鋰離子遷移到負(fù)極;遷移到負(fù)極的硝酸根因其較高的還原電位優(yōu)先被還原,從而形成一層致密的固態(tài)電解質(zhì)層,能夠較好地抑制酯類(lèi)溶劑的分解。恒流鋰金屬沉積/剝離實(shí)驗(yàn)顯示含有γ-丁內(nèi)酯與LiNO3的電解液庫(kù)侖效率達(dá)到98.8%,同時(shí)使用高載量NMC333(2.8mAh/cm2)的鋰金屬電池在循環(huán)五十圈以...
其中中國(guó)產(chǎn)能為21700噸,全球市場(chǎng)規(guī)模超過(guò)30億元。目前,六氟磷酸鋰主要通過(guò)氟化氫法來(lái)制備。在這一生產(chǎn)工藝中,使用氫氟酸為氟化試劑,將五氯化磷氟化,生成的五氟化磷再與氟化鋰反應(yīng),合成六氟磷酸鋰。這種方法是成熟的工藝路線,但卻有著較嚴(yán)重的環(huán)境與安全問(wèn)題:首先,氟化氫作為有毒、高腐蝕的試劑,對(duì)環(huán)境與操作人員危害較大,使用時(shí)有較高的安全風(fēng)險(xiǎn);其次,該工藝副產(chǎn)氯化氫,亦是一種腐蝕性物質(zhì),較難處理。利用骨架材料與溶劑分子之間的極性相互作用,可在復(fù)合鋰負(fù)極內(nèi)部鋰表面提供穩(wěn)定且均勻的SEI。ELPAN的氰基官能團(tuán)和FEC的羰基官能團(tuán)之間有很強(qiáng)的偶極-偶極相互作用。因此,F(xiàn)EC分子傾向于在ELPAN附近富集...
應(yīng)變的DOL電解質(zhì)表現(xiàn)出類(lèi)似于非晶聚合物的物理性質(zhì),包括明顯的玻璃化轉(zhuǎn)變、提高的模量和低的離子傳輸活化熵,在低至-50℃的溫度下,表現(xiàn)出異常高的類(lèi)液體離子電導(dǎo)率(1mScm-1)。電化學(xué)研究表明,該電解質(zhì)在鋰金屬負(fù)極半電池和全電池中表現(xiàn)出優(yōu)異的性能?;?yàn)室原有熒光曲線建立時(shí)使用脫模劑為30%或40%的溴化鋰,硝酸鋰作為氧化劑,如有裂紋和氣泡,將影響測(cè)量數(shù)據(jù)的穩(wěn)定性,使得熔片時(shí)產(chǎn)生的表面張力過(guò)小,樣品粘附于鉑金鍋內(nèi)壁,不易脫落,對(duì)鉑金鍋的要求很高,使用時(shí)間一般在三個(gè)多月就要返修一次,每次所需整形費(fèi)用1萬(wàn)余元。化驗(yàn)組本著降本增效的原則,集思廣益,反復(fù)進(jìn)行實(shí)驗(yàn),并改用了碘化銨做脫模劑,碘化銨遇熱易分...
顯示的右移的CV上升邊緣表明,隨著電解質(zhì)濃度的增加,鋰離子的界面動(dòng)力學(xué)過(guò)程逐漸減慢了。在LiNO3電解質(zhì)中,當(dāng)掃描速率設(shè)定為1mVs-1時(shí),不同濃度的歸一化CV曲線幾乎重疊,這意味著有足夠的時(shí)間讓鋰離子實(shí)現(xiàn)界面活化過(guò)程,低掃描速率下的動(dòng)態(tài)決定性步驟不是界面活化。然而,當(dāng)掃描速率提高到5mVs-1和10mVs-1時(shí),在高濃度的LiNO3中,上升沿明顯遷移到高電位。因此,在LiNO3電解質(zhì)系統(tǒng)中,電解質(zhì)濃度對(duì)界面動(dòng)力學(xué)的影響在低掃描速率下不突出,但在高掃描速率下變得明顯。在LiNO3中,也是如此,較高的電解質(zhì)濃度會(huì)導(dǎo)致較慢的鋰離子界面動(dòng)力學(xué)。在給定的濃度下,較高的掃描速率會(huì)導(dǎo)致CV上升沿向更高的電...
促進(jìn)鋰均勻沉積。鋰表面保護(hù)層還處于研究的初始階段,尤其是對(duì)于LiF與鋰錫合金間的相互作用的研究還很少報(bào)道。南達(dá)科他大學(xué)的YueZhou和美國(guó)陸軍實(shí)驗(yàn)室的徐康共同報(bào)道了一種復(fù)合人工SEI膜用于鋰負(fù)極保護(hù)的研究。作者通過(guò)簡(jiǎn)單的將氟化錫溶液均勻涂于鋰片表面,原位合成得到了由氟化鋰和鋰錫合金組成的界面層。其中,氟化鋰可以提升界面的離子電導(dǎo)率,穩(wěn)定的鋰錫合金可以降低界面的阻抗,證實(shí)了兩者的協(xié)同作用共同,促進(jìn)了無(wú)枝晶鋰的沉積和循環(huán)。該成果“Fluorinatedhybridsolid-electrolyte-interphasefordendrite-freelithiumdeposition”發(fā)表在國(guó)際...
理論計(jì)算表明,γ-丁內(nèi)酯與LiNO3的配位更穩(wěn)定,并且靜電勢(shì)結(jié)果顯示負(fù)電荷局域在硝酸根上,使得硝酸根在γ-丁內(nèi)酯中類(lèi)似于解離的狀態(tài),與實(shí)驗(yàn)觀察到LiNO3在γ-丁內(nèi)酯內(nèi)具有較高的溶解度結(jié)果一致。同時(shí),電解液的拉曼光譜顯示大部分硝酸根與鋰離子形成緊密離子對(duì),說(shuō)明大部分硝酸根存在于鋰離子溶劑化結(jié)構(gòu)中,并且能夠隨著鋰離子遷移到負(fù)極;遷移到負(fù)極的硝酸根因其較高的還原電位優(yōu)先被還原,從而形成一層致密的固態(tài)電解質(zhì)層,能夠較好地抑制酯類(lèi)溶劑的分解。恒流鋰金屬沉積/剝離實(shí)驗(yàn)顯示含有γ-丁內(nèi)酯與LiNO3的電解液庫(kù)侖效率達(dá)到98.8%,同時(shí)使用高載量NMC333(2.8mAh/cm2)的鋰金屬電池在循環(huán)五十圈以...
黃佳琦研究員課題組通過(guò)引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1.0wt%硝酸鋰添加劑的溶解,整個(gè)溶液的顏色變化明顯:?jiǎn)为?dú)的硝酸鋰和單獨(dú)的氟化銅試劑在酯類(lèi)電解液中均無(wú)法溶解;當(dāng)兩者共同加入溶液后,沉淀完全消失,并且呈現(xiàn)藍(lán)色。該藍(lán)色溶液的出現(xiàn),是因?yàn)楫a(chǎn)生了可溶解的銅離子絡(luò)合物。硝酸鋰(LiNO3)作為鋰硫電池電解液的添加劑,在抑制多硫化物的“穿梭效應(yīng)”和保護(hù)金屬鋰負(fù)極上發(fā)揮了重要作用。鋰硫電池電解液體系多為醚類(lèi)體系,而醚類(lèi)體系因其窄的電化學(xué)窗口無(wú)法使用到高壓電池中(>4.3V),酯類(lèi)電解液體系能夠承受4.3V及以上電壓。黃佳琦研究員課題組通過(guò)引入微量的氟化銅(0.2wt%),**終實(shí)現(xiàn)了1...
促進(jìn)鋰均勻沉積。鋰表面保護(hù)層還處于研究的初始階段,尤其是對(duì)于LiF與鋰錫合金間的相互作用的研究還很少報(bào)道。南達(dá)科他大學(xué)的YueZhou和美國(guó)陸軍實(shí)驗(yàn)室的徐康共同報(bào)道了一種復(fù)合人工SEI膜用于鋰負(fù)極保護(hù)的研究。作者通過(guò)簡(jiǎn)單的將氟化錫溶液均勻涂于鋰片表面,原位合成得到了由氟化鋰和鋰錫合金組成的界面層。其中,氟化鋰可以提升界面的離子電導(dǎo)率,穩(wěn)定的鋰錫合金可以降低界面的阻抗,證實(shí)了兩者的協(xié)同作用共同,促進(jìn)了無(wú)枝晶鋰的沉積和循環(huán)。該成果“Fluorinatedhybridsolid-electrolyte-interphasefordendrite-freelithiumdeposition”發(fā)表在國(guó)際...
采用充放電測(cè)試和交流阻抗測(cè)試研究了硝酸鋰作電解液添加劑對(duì)鋰硫電池電化學(xué)性能的影響。采用電子掃描顯微鏡觀察分析了添加劑對(duì)鋰負(fù)極的影響,探討了硝酸鋰的作用機(jī)理。結(jié)果表明,采用硝酸鋰作為鋰硫電池電解液的添加劑,可以在鋰負(fù)極表面形成具有鈍化負(fù)極活性表面及保護(hù)鋰負(fù)極的界面膜。該膜可以抑制電解液中高價(jià)態(tài)聚硫離子與鋰負(fù)極的副反應(yīng),避免在鋰負(fù)極表面形成不可逆的硫化鋰,從而提高鋰硫電池的循環(huán)性能和放電容量。采用硝酸鋰作添加劑的鋰硫電池***放電比容量達(dá)1172mA.h/g,循環(huán)100次比容量保持為629mA:h/g。康奈爾大學(xué)LyndenArcher團(tuán)隊(duì)以“Designingelectrolyteswithpo...
含有保護(hù)層的金屬鋰可以移植到不含任何負(fù)極保護(hù)劑、添加劑的電解液中穩(wěn)定利用,抑制鋰枝晶的形成和生長(zhǎng),從而提高負(fù)極的利用率。當(dāng)采用硫或者三元氧化物正極材料,分別在醚類(lèi)或碳酸酯類(lèi)電解液中與上述帶有固態(tài)電解質(zhì)界面膜的金屬鋰結(jié)合,固態(tài)電解質(zhì)保護(hù)膜可以移植到新體系的電池中抑制金屬鋰枝晶的生長(zhǎng),成功實(shí)現(xiàn)了高能量密度高穩(wěn)定性的鋰硫電池、鋰金屬電池的有效構(gòu)筑。實(shí)用條件下,高比能量金屬鋰電池需要同時(shí)滿(mǎn)足高電壓正極(如:NCM811),有限的負(fù)極正極比(N/Pratio)以及有限的電解液正極比(E/Cratio)。這就要求金屬鋰表面形成穩(wěn)定的固體電解質(zhì)膜(SEI)。醋酸鋰:醋酸乙烯與活性聚丁二烯基鋰反應(yīng)機(jī)理的探討。...
為了進(jìn)一步闡明S@V/V2O5電極對(duì)穿梭效應(yīng)的抑制作用,作者在未添加LiNO3的電解液中測(cè)試了S@V/V2O5和S電極的循環(huán)性能;LiNO3可在鋰負(fù)極表面形成一層鈍化膜阻擋多硫化物的穿梭,提高電池循環(huán)的庫(kù)侖效率和循環(huán)性能,因此在無(wú)LiNO3添加的電解液中測(cè)試循環(huán)性能更能體現(xiàn)材料本身對(duì)穿梭效應(yīng)的抑制作用;結(jié)果顯示,在0.2C倍率下循環(huán)100圈后S@V/V2O5電極的平均庫(kù)侖效率超過(guò)90%,而S電極的平均庫(kù)侖效率*為78%??紤]到硫含量對(duì)載量和電池實(shí)際能量密度的影響,作者進(jìn)一步降低反應(yīng)溫度,將S@V/V2O5材料的硫含量提高至93wt%;此時(shí),S@V/V2O5仍能保持核殼結(jié)構(gòu),將其制備成無(wú)集流體的...