鋰金屬電池生產(chǎn)線解析
米開羅那鋰金屬固態(tài)電池成套實(shí)驗(yàn)線正式向客戶交付
?專為固態(tài)電池研發(fā)|米開羅那正式推出鋰金屬全固態(tài)電池實(shí)驗(yàn)線
鋰銅復(fù)合帶負(fù)極制片機(jī):鋰銅負(fù)極制片的好幫手
米開羅那出席第五屆中國(guó)固態(tài)電池技術(shù)創(chuàng)新與產(chǎn)業(yè)應(yīng)用研討會(huì)
米開羅那(東莞)工業(yè)智能科技有限公司在香港城市大學(xué)-復(fù)旦大學(xué)
新能源鋰電設(shè)備維護(hù)管理:延長(zhǎng)設(shè)備使用壽命的技巧
新能源鋰電設(shè)備的技術(shù)前沿:探索未來電池制造的發(fā)展方向
鋰電池全套設(shè)備運(yùn)行與維護(hù):優(yōu)化設(shè)備性能的實(shí)用技巧-工業(yè)鋰電池
鋰電池自動(dòng)組裝設(shè)備:實(shí)現(xiàn)高精度與高穩(wěn)定性生產(chǎn)的必備條件
原位納米力學(xué)測(cè)試系統(tǒng)是一種用于材料科學(xué)領(lǐng)域的儀器,于2011年10月27日啟用。壓痕測(cè)試單元:(1)可實(shí)現(xiàn)70nN~30mN不同加載載荷,載荷分辨率為3nN;(2)位移分辨率:0.006nm,較小位移:0.2nm,較大位移:5um;(3)室溫?zé)崞疲?.05nm/s;(4)更換壓頭時(shí)間:60s。能夠?qū)崿F(xiàn)薄膜或其他金屬或非金屬材料的壓痕、劃痕、摩擦磨損、微彎曲、高溫測(cè)試及微彎曲、NanoDMA、模量成像等功能。力學(xué)測(cè)試芯片大小只為幾平方毫米,亦可放置在電子顯微鏡真空腔中進(jìn)行原位實(shí)時(shí)檢測(cè)。通過納米力學(xué)測(cè)試,可評(píng)估納米材料在極端環(huán)境下的可靠性。表面微納米力學(xué)測(cè)試儀
力—距離曲線測(cè)試分為準(zhǔn)靜態(tài)模式和動(dòng)態(tài)模式,實(shí)際應(yīng)用中采用較多的是準(zhǔn)靜態(tài)模式下的力-距離曲線測(cè)試。由力—距離曲線測(cè)試可以獲得樣品表面的力學(xué)性能及黏附的信息。利用接觸力學(xué)模型對(duì)力—距離曲線進(jìn)行擬合,可以獲得樣品表面的彈性模量。力—距離曲線測(cè)試與納米壓痕相比,可以施加更小的作用力(nN量級(jí)),較好地避免了對(duì)生物軟材料的損害,極大地降低了基底對(duì)薄膜力學(xué)性能測(cè)試的影響。力—距離曲線測(cè)試普遍應(yīng)用于聚合物材料和生物材料的納米力學(xué)性能測(cè)試,很多研究者利用此方法獲得了細(xì)胞的模量信息。力—距離曲線陣列測(cè)試可以獲得測(cè)試區(qū)域內(nèi)力學(xué)性能的分布,但是分辨率較低,且測(cè)試時(shí)間較長(zhǎng)。另外,力—距離曲線一般只對(duì)軟材料才比較有效。圖2 是通過力—距離曲線陣列測(cè)試獲得的細(xì)胞力學(xué)性能(模量) 的分布。江西國(guó)產(chǎn)納米力學(xué)測(cè)試廠家供應(yīng)納米力學(xué)測(cè)試的發(fā)展促進(jìn)了納米材料及其應(yīng)用領(lǐng)域的快速發(fā)展和創(chuàng)新。
原位納米片取樣和力學(xué)測(cè)試技術(shù),原位納米片取樣和力學(xué)測(cè)試技術(shù)是一種新興的納米尺度力學(xué)測(cè)試方法,其基本原理是利用優(yōu)化的離子束打造方法,在含有待測(cè)塑料表面的納米區(qū)域內(nèi)制備出超薄的平面固體材料,再對(duì)其進(jìn)行拉伸、扭曲等力學(xué)測(cè)試。相比于傳統(tǒng)的拉伸試驗(yàn)等方法,原位納米片取樣技術(shù)具有更優(yōu)的尺寸控制和納米量級(jí)精度,可以為納米尺度力學(xué)測(cè)試提供更加準(zhǔn)確的數(shù)據(jù)。總之,原位納米力學(xué)測(cè)量技術(shù)的研究及應(yīng)用是未來納米材料科學(xué)發(fā)展的重要方向之一,將為納米材料的設(shè)計(jì)、開發(fā)以及工業(yè)應(yīng)用等領(lǐng)域的發(fā)展做出積極貢獻(xiàn)。
納米壓痕獲得的材料信息也比較豐富,既可以通過靜態(tài)力學(xué)性能測(cè)試獲得材料的硬度、彈性模量、斷裂韌性、相變(疇變) 等信息,也可以通過動(dòng)態(tài)力學(xué)性能測(cè)試獲得被測(cè)樣品的存儲(chǔ)模量、損耗模量或損耗因子等。另外,動(dòng)態(tài)納米壓痕技術(shù)還可以實(shí)現(xiàn)對(duì)材料微納米尺度存儲(chǔ)模量和損耗模量的模量成像(modulus mapping)。圖1 是美國(guó)Hysitron 公司生產(chǎn)的TI-900 Triboindenter 納米壓痕儀的實(shí)物圖。納米壓痕作為一種較通用的微納米力學(xué)測(cè)試方法,目前仍然有不少研究者致力于對(duì)其方法本身的改進(jìn)和發(fā)展。納米力學(xué)測(cè)試對(duì)于理解納米材料在極端條件下的力學(xué)行為具有重要意義,如高溫、高壓等。
除了采用彎曲振動(dòng)模式進(jìn)行測(cè)量外,Reinstadtler 等給出了探針扭轉(zhuǎn)振動(dòng)模式測(cè)量側(cè)向接觸剛度的理論基礎(chǔ)。通過同時(shí)測(cè)量探針微懸臂的彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng),Hurley 和Turner提出了一種同時(shí)測(cè)量各向同性材料楊氏模量、剪切模量和泊松比的方法。Killgore 等提出了利用軟探針的高階模態(tài)進(jìn)行AFAM 定量化測(cè)試的方法,可以使探針施加在樣品上的力減小到10 nN,極大地?cái)U(kuò)展了這一方法的應(yīng)用范圍。Killgore 和Hurley提出了一種新的脈沖接觸共振的方法,將接觸共振與脈沖力模式相結(jié)合,不只能測(cè)量探針的接觸共振頻率和品質(zhì)因子,還可以測(cè)量針尖樣品之間黏附力的大小。納米力學(xué)測(cè)試可以幫助解決材料在實(shí)際使用過程中遇到的損傷和磨損問題。海南表面微納米力學(xué)測(cè)試供應(yīng)商
納米力學(xué)測(cè)試設(shè)備的精度和靈敏度對(duì)于獲得準(zhǔn)確的測(cè)試結(jié)果至關(guān)重要。表面微納米力學(xué)測(cè)試儀
國(guó)內(nèi)的江西省科學(xué)院、清華大學(xué)、南昌大學(xué)等采用掃描探針顯微鏡系列,如掃描隧道顯微鏡、原子力顯微鏡等,對(duì)高精度納米和亞納米量級(jí)的光學(xué)超光滑表面的粗糙度和微輪廓進(jìn)行測(cè)量研究。天津大學(xué)劉安偉等在量子隧道效應(yīng)的基礎(chǔ)上,建立了適用于平坦表面的掃描隧道顯微鏡微輪廓測(cè)量的數(shù)學(xué)模型,仿真結(jié)果較好地反映了掃描隧道顯微鏡對(duì)樣品表面輪廓的測(cè)量過程。清華大學(xué)李達(dá)成等研制成功在線測(cè)量超光滑表面粗糙度的激光外差干涉儀,該儀器以穩(wěn)頻半導(dǎo)體激光器作為光源,共光路設(shè)計(jì)提高了抗外界環(huán)境干擾的能力,其縱向和橫向分辨率分別為0.39nm和0.73μm。李巖等提出了一種基于頻率分裂激光器光強(qiáng)差法的納米測(cè)量原理。表面微納米力學(xué)測(cè)試儀