AFAM 方法提出之后,不少研究者對(duì)方法的準(zhǔn)確度和靈敏度方面進(jìn)行了研究。Hurley 等分析了空氣濕度對(duì)AFAM 定量化測(cè)量結(jié)果的影響。Rabe 等分析了探針基片對(duì)AFAM 定量化測(cè)量的影響。Hurley 等詳細(xì)對(duì)比了AFAM 單點(diǎn)測(cè)試與納米壓痕以及聲表面波譜方法的測(cè)試原理、空間分辨率、適用性及測(cè)試優(yōu)缺點(diǎn)等。Stan 等提出一種雙參考材料的方法,此方法不需要了解針尖的力學(xué)性能,可以在一定程度上提高測(cè)試的準(zhǔn)確度。他們還提出了一種基于多峰接觸的接觸力學(xué)模型,在一定程度上可以提高測(cè)試的準(zhǔn)確度。Turner 等通過(guò)嚴(yán)格的理論推導(dǎo)研究了探針不同階彎曲振動(dòng)和扭轉(zhuǎn)振動(dòng)模態(tài)的靈敏度問(wèn)題。Muraoka提出一種在探針微懸臂末端附加集中質(zhì)量的方法,以提高測(cè)試靈敏度。Rupp 等對(duì)AFAM測(cè)試過(guò)程中針尖樣品之間的非線性相互作用進(jìn)行了研究。納米力學(xué)測(cè)試可以用于評(píng)估納米材料的耐久性和壽命,為產(chǎn)品的設(shè)計(jì)和使用提供參考依據(jù)。深圳核工業(yè)納米力學(xué)測(cè)試儀
納米壓痕技術(shù)也稱深度敏感壓痕技術(shù)(Depth-Sensing Indentation, DSI),是較簡(jiǎn)單的測(cè)試材料力學(xué)性質(zhì)的方法之一,可以在納米尺度上測(cè)量材料的各種力學(xué)性質(zhì),如載荷-位移曲線、彈性模量、硬度、斷裂韌性、應(yīng)變硬化效應(yīng)、粘彈性或蠕變行為等。納米壓痕理論,納米壓痕試驗(yàn)中典型的載荷-位移曲線。在加載過(guò)程中試樣表面首先發(fā)生的是彈性變形,隨著載荷進(jìn)一步提高,塑性變形開(kāi)始出現(xiàn)并逐步增大;卸載過(guò)程主要是彈性變形恢復(fù)的過(guò)程,而塑性變形較終使得樣品表面形成了壓痕。圖中Pmax 為較大載荷,hmax 為較大位移,hf為卸載后的位移,S為卸載曲線初期的斜率。納米硬度的計(jì)算仍采用傳統(tǒng)的硬度公式H =P/A。式中,H 為硬度 (GPa);P 為較大載荷 ( μ N),即上文中的 P max ;A 為壓痕面積的投影(nm2 )。 貴州納米力學(xué)壓痕測(cè)試借助納米力學(xué)測(cè)試,可以評(píng)估材料在微觀尺度下的耐磨性和耐蝕性。
電子/離子束云紋法和電鏡掃描云紋法,利用電子/離子?xùn)|抗蝕劑制作出10000線/mm的電子/離子?xùn)|云紋光柵,這種光柵的應(yīng)用頻率范圍為40~20000線/mm,柵線的較小寬度可達(dá)到幾十納米。電鏡掃描條紋的倍增技術(shù)用于單晶材料納米級(jí)變形測(cè)量。其原理是:在測(cè)量中,單晶材料的晶格結(jié)構(gòu)由透射電鏡(TEM)采集并記錄在感光膠片上作為試件柵,以幾何光柵為參考柵,較終通過(guò)透射電鏡放大倍數(shù)與試件柵的頻率關(guān)系對(duì)上述兩柵的干涉云紋進(jìn)行分析,即可獲得單晶材料表面微小的應(yīng)變場(chǎng)。STM/晶格光柵云紋法,隧道顯微鏡(STM)納米云紋法是測(cè)量表面位移的新技術(shù)。測(cè)量中,把掃描隧道顯微鏡的探針掃描線作為參考柵,把物質(zhì)原子晶格柵結(jié)構(gòu)作為試件柵,然后對(duì)這兩組柵線干涉形成的云紋進(jìn)行納米級(jí)變形測(cè)量。運(yùn)用該方法對(duì)高定向裂解石墨的納米級(jí)變形應(yīng)變進(jìn)行測(cè)試,得到隨掃描范圍變化的應(yīng)變場(chǎng)。
對(duì)納米材料和納米器件的研究和發(fā)展來(lái)說(shuō),表征和檢測(cè)起著至關(guān)重要的作用。由于人們對(duì)納米材料和器件的許多基本特征、結(jié)構(gòu)和相互作用了解得還不很充分,使其在設(shè)計(jì)和制造中存在許多的盲目性,現(xiàn)有的測(cè)量表征技術(shù)就存在著許多問(wèn)題。此外,由于納米材料和器件的特征長(zhǎng)度很小,測(cè)量時(shí)產(chǎn)生很大擾動(dòng),以至產(chǎn)生的信息并不能完全表示其本身特性。這些都是限制納米測(cè)量技術(shù)通用化和應(yīng)用化的瓶頸,因此,納米尺度下的測(cè)量無(wú)論是在理論上,還是在技術(shù)和設(shè)備上都需要深入研究和發(fā)展。發(fā)展高精度、高穩(wěn)定性納米力學(xué)測(cè)試設(shè)備,是當(dāng)前科研工作的重要任務(wù)。
量子效應(yīng)決定物理系統(tǒng)內(nèi)個(gè)別原子間的相互作用力。在納米力學(xué)中用一些原子間勢(shì)能的平均數(shù)學(xué)模型引入量子效應(yīng)。在經(jīng)典多體動(dòng)力學(xué)內(nèi)加入原子間勢(shì)能提供了納米結(jié)構(gòu)和原子尺寸決定性的力學(xué)模型。數(shù)據(jù)方法求解這些模型稱為分子動(dòng)力學(xué)(MD),有時(shí)稱為分子力學(xué)。非決定性數(shù)字近似包括蒙特卡羅,動(dòng)力蒙卡羅和其它方法。現(xiàn)代的數(shù)字工具也包括交叉通用近似,允許同時(shí)和連續(xù)利用原子尺寸的模型。發(fā)展這些復(fù)雜的模型是另一應(yīng)用力學(xué)的研究課題。納米力學(xué)測(cè)試可以幫助解決材料在實(shí)際使用過(guò)程中遇到的損傷和磨損問(wèn)題。湖南高精度納米力學(xué)測(cè)試設(shè)備
納米力學(xué)測(cè)試通常在真空或者液體環(huán)境下進(jìn)行,以保證測(cè)試的準(zhǔn)確性。深圳核工業(yè)納米力學(xué)測(cè)試儀
摘要 隨著科學(xué)技術(shù)的發(fā)展進(jìn)步,材料的研發(fā)和生產(chǎn)應(yīng)用進(jìn)入了微納米尺度,微納米材料憑借其出色的性能被人們普遍應(yīng)用于科研和生產(chǎn)生活的各方各面。與此同時(shí),人們正深入研究探索微納米尺度的材料力學(xué)性能參數(shù)測(cè)量技術(shù)方法,以滿足微納米材料的飛速發(fā)展和應(yīng)用需求。微納米力學(xué)測(cè)量技術(shù)的應(yīng)用背景,隨著材料的研發(fā)生產(chǎn)和應(yīng)用進(jìn)入微納米尺度,以往的通過(guò)宏觀的力學(xué)測(cè)量手段已不適用于測(cè)量微納米薄膜和器件的力學(xué)性能參數(shù)的測(cè)量。近年來(lái),微納米壓入和劃痕等力學(xué)測(cè)量手段隨著微納米材料的發(fā)展和應(yīng)用,在半導(dǎo)體薄膜和器件、功能薄膜、新能源材料、生物材料等領(lǐng)域應(yīng)用愈發(fā)普遍,因此亟待建立基于微納米尺度的材料力學(xué)性能參數(shù)測(cè)量的技術(shù)體系。深圳核工業(yè)納米力學(xué)測(cè)試儀