鋰金屬電池生產(chǎn)線解析
米開羅那鋰金屬固態(tài)電池成套實驗線正式向客戶交付
?專為固態(tài)電池研發(fā)|米開羅那正式推出鋰金屬全固態(tài)電池實驗線
鋰銅復合帶負極制片機:鋰銅負極制片的好幫手
米開羅那出席第五屆中國固態(tài)電池技術創(chuàng)新與產(chǎn)業(yè)應用研討會
米開羅那(東莞)工業(yè)智能科技有限公司在香港城市大學-復旦大學
新能源鋰電設備維護管理:延長設備使用壽命的技巧
新能源鋰電設備的技術前沿:探索未來電池制造的發(fā)展方向
鋰電池全套設備運行與維護:優(yōu)化設備性能的實用技巧-工業(yè)鋰電池
鋰電池自動組裝設備:實現(xiàn)高精度與高穩(wěn)定性生產(chǎn)的必備條件
AFAM 方法較早是由德國佛羅恩霍夫無損檢測研究所Rabe 等在1994 年提出的。1996 年Rabe 等詳細分析了探針自由狀態(tài)以及針尖與樣品表面接觸情況下微懸臂的動力學特性,建立了針尖與樣品接觸時共振頻率與接觸剛度之間的定量化關系。之后,他們還給出了考慮針尖與樣品側向接觸、針尖高度及微懸臂傾角影響的微懸臂振動特征方程。他們在這方面的主要工作奠定了AFAM 定量化測試的理論基礎。Reinstaedtler 等利用光學干涉法對探針懸臂梁的振動模態(tài)進行了測量。Turner 等采用解析方法和數(shù)值方法對比了針尖樣品之間分別存在線性和非線性相互作用時,點質量模型和Euler-Bernoulli 梁模型描述懸臂梁動態(tài)特性的異同。隨著納米技術的不斷發(fā)展,納米力學測試技術也在不斷更新?lián)Q代,以適應更高精度的測試需求。重慶高校納米力學測試供應
目前納米壓痕在科研界和工業(yè)界都得到了普遍的應用,但是它仍然存在一些難以克服的缺點,比如納米壓痕實際上是對材料有損的測試,尤其是對于薄膜來說;其壓針的曲率半徑一般在50 nm 以上,由于分辨率的限制,不能對更小尺度的納米結構進行測試;納米壓痕的掃描功能不強,掃描速度相對較慢,無法捕捉材料在外場作用下動態(tài)性能的變化?;贏FM 的納米力學測試方法是另一類被普遍應用的測試方法。1986 年,Binnig 等發(fā)明了頭一臺原子力顯微鏡(AFM)。AFM 克服了之前掃描隧道顯微鏡(STM) 只能對導電樣品或半導體樣品進行成像的限制,可以實現(xiàn)對絕緣體材料表面原子尺度的成像,具有更普遍的應用范圍。AFM 利用探針作為傳感器對樣品表面進行測試,不只可以獲得樣品表面的形貌信息,還可以實現(xiàn)對材料微區(qū)物理、化學、力學等性質的定量化測試。目前,AFM 普遍應用于物理學、化學、材料學、生物醫(yī)學、微電子等眾多領域。金屬納米力學測試應用納米力學測試通常在真空或者液體環(huán)境下進行,以保證測試的準確性。
一般力學原理包括:。能量和動量守恒原理;。哈密頓變分原理;。對稱原理。由于研究的物體小,納米力學也要考慮:。當物體尺寸和原子距離可比時,物體的離散性;。物體內(nèi)自由度的多樣性和有限性。。熱脹落的重要性;。熵效應的重要性;。量子效應的重要性。這些原理可提供對納米物體新異性質深入了解。新異性質是指這種性質在類似的宏觀物體沒有或者很不相同。特別是,當物體變小,會出現(xiàn)各種表面效應,它由納米結構較高的表面與體積比所決定。這些效應影晌納米結構的機械能和熱學性質(熔點,熱容等)例如,由于離散性,固體內(nèi)機械波要分散,在小區(qū)域內(nèi),彈性力學的解有特別的行為。自由度大引起熱脹落是納米顆粒通過潛在勢壘產(chǎn)生熱隧道及液體和固體交錯擴散的理由。小和熱漲落提供了納米顆粒布朗運動的基本理由。在納米范圍增加了熱漲落重要性和結構熵,使納米結構產(chǎn)生超彈性,熵彈性(熵力)和其它新彈性。開放納米系統(tǒng)的自組織和合作行為中,結構熵也令人產(chǎn)生很大興趣。
納米壓痕法:納米壓痕硬度法是一類測量材料表面力學性能 的先進技術。其原理是在加載過程中 試樣表面在壓頭作用下首先發(fā)生彈性變形,隨著載荷的增加試樣開始發(fā)生塑性變形,加載曲線呈非線性,卸載曲線反映被測物體的彈性恢復過程。通過分析加卸載曲線可以得到材料的硬度和彈性模量等參量。納米壓痕法不只可以測量材料的硬度和彈性模量,還可以根據(jù)壓頭壓縮過程中脆性材料產(chǎn)生的裂紋估算材料的斷裂韌性,根據(jù)材料的位移壓力曲線與時間的相關性獲悉材料的蠕變特性。除此之外,納米壓痕法還用于納米膜厚度、微結構,如微梁的剛度與撓度等的測量。在納米力學測試中,常用的測試方法包括納米壓痕測試、納米拉伸測試和納米彎曲測試等。
SFM納米力學測試。在掃描隧道顯微鏡(STM)發(fā)明以后,基于STM,人們又陸續(xù)發(fā)展一系列相似的掃描成像顯微技術,它們包括原子力顯微鏡(AFM)、摩擦力顯微鏡(FFM)、磁力顯微鏡、靜電力顯微等,統(tǒng)稱為掃描力顯微鏡(SFM)。由于這些掃描力顯微鏡成像的工作原理是基于探針與被測樣品之間的原子力、摩擦力、磁力或靜電力,因此,它們自然地成為測量探針與被測樣品之間微觀原子力、摩擦力、磁力或靜電力的有力工具。采用原子力顯微鏡對飽和鐵轉鐵蛋白和脫鐵轉鐵蛋白與轉鐵蛋白抗體之間的相互作用進行研究通過原子力顯微鏡對分子間力的曲線進行探測,比較飽和鐵轉鐵蛋白和脫鐵轉鐵蛋白與抗體之間的作用力的差異。納米力學測試旨在探究微觀尺度下材料的力學性能,為科研和工業(yè)領域提供有力支持。重慶高校納米力學測試供應
納米力學測試可以幫助研究人員了解納米材料的變形和斷裂機制,為納米材料的設計和優(yōu)化提供指導。重慶高校納米力學測試供應
納米壓痕試驗舉例,試驗材料取單晶鋁,試驗在美國 MTS 公司生產(chǎn)的 Nano Indenter XP 型納米硬度儀以及美國 Digital Instruments 公司生產(chǎn)的原子力顯微鏡 (AFM) 上進行。首先將試樣放到納米硬度儀上進行壓痕試驗,根據(jù)設置的較大載荷或者壓痕深度的不同,試驗時間從數(shù)十分鐘到若干小時不等,中間過程不需人工干預。試驗結束后,納米壓痕儀自動計算出試樣的納米硬度值和相關重要性能指標。本試驗中對單晶鋁(110) 面進行檢測,設置壓痕深度為1.5 μ m,共測量三點,較終結果取三點的平均值。重慶高校納米力學測試供應