現(xiàn)代分子生物學技術的迅速發(fā)展和科技的進步,特別是隨著后基因組時代的到來,人們已經(jīng)能夠根據(jù)需要建立各種細胞模型,為在體研究基因表達規(guī)律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現(xiàn)有的分子生物學方法,已經(jīng)對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現(xiàn)對蛋白質和基因活動的實時、動態(tài)監(jiān)測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因此,發(fā)展能用于、動態(tài)、實時、連續(xù)監(jiān)測蛋白質和基因活動的方法非常必要。多光子顯微鏡在生物醫(yī)學研究中有廣泛的應用,可以觀察細胞內(nèi)的亞細胞結構、蛋白質分布、細胞活動等。美國離體多光子顯微鏡單分子成像定位
國內(nèi)顯微鏡制造市場目前斷層嚴重。目前我國顯微鏡行業(yè)發(fā)展缺乏技術沉淀,20年以上經(jīng)營積累的企業(yè)十分稀缺,深度精密制造、光學主要部件設計及工藝嚴重制約產(chǎn)業(yè)升級。目前中國顯微鏡中如多光子顯微鏡、共聚焦掃描和電子顯微鏡等主要集中在徠卡顯微系統(tǒng)、蔡司、尼康、奧林巴斯等國外企業(yè)。國內(nèi)具備生產(chǎn)顯微鏡能力的企業(yè)屈指可數(shù),若國內(nèi)顯微鏡企業(yè)能打破技術壁壘,切入顯微鏡市場,企業(yè)的生產(chǎn)經(jīng)營將騰躍至一個更高的格局。未來國產(chǎn)多光子激光掃描顯微鏡替代空間大。目前中國使用的多光子激光掃描顯微鏡幾乎被徠卡顯微系統(tǒng)、蔡司、尼康和奧林巴斯壟斷。國內(nèi)有能力開始生產(chǎn)多光子激光掃描顯微鏡的企業(yè)極少,若國內(nèi)能夠制造出高性能、高可靠性的多光子激光掃描顯微鏡,無異是會面臨極大的市場機遇。清醒動物多光子顯微鏡設備由于其非侵入性和高分辨率的特點,多光子顯微鏡在神經(jīng)科學、ai癥研究、免疫學等領域發(fā)揮了重要作用。
2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調(diào)諧透鏡(ETL)已經(jīng)實現(xiàn)了快速軸向掃描。但遠程對焦時對反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現(xiàn)高分辨率成像。有兩種方法可以實現(xiàn)這種設計。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準直后的激光束經(jīng)偏振分束器反射進入遠程聚焦臂,由GSM進行掃描,使OBJ1產(chǎn)生的激光焦點可以進行水平掃描。
細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等等,Ca2+熒光信號強度也會發(fā)生很強的變化。多光子顯微鏡是一種高分辨率的顯微鏡技術,利用多光子激發(fā)熒光的原理來觀察生物樣品的細胞結構和功能。
2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會聚角為Δθ。光束進入到一對幾乎平行的高反射鏡中,其間距為S,偏角為α。經(jīng)過反射鏡多次反射后,激光脈沖被分成多個傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標準雙光子熒光顯微鏡中。光源是具有1MHz重復頻率的920nm的激光器,通過FACED模塊可產(chǎn)生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。光子顯微鏡利用光學透鏡和光學元件將樣品中的光反射或透射到目鏡中,從而形成圖像。激光掃描多光子顯微鏡數(shù)據(jù)處理
多光子顯微鏡,實現(xiàn)無創(chuàng)、無標記的生物組織觀測方案。美國離體多光子顯微鏡單分子成像定位
多光子顯微鏡成像深度深、對比度高,在生物成像中具有重要意義,但通常需要較高的功率。結合時間傳播的超短脈沖可以實現(xiàn)超快的掃描速度和較深的成像深度,但近紅外波段的光本身會導致分辨率較低。基于多光子上轉換材料和時間編碼結構光顯微鏡的高速超分辨成像系統(tǒng)(MUTE-SIM)是由清華大學教授和北京大學彭研究員合作開發(fā)的。可實現(xiàn)50MHz的超高掃描速度,突破衍射極限,實現(xiàn)超分辨率成像。與普通熒光顯微鏡相比,該顯微鏡經(jīng)過改進,只需要較低的激發(fā)功率。這種超快、低功耗、多光子超分辨率技術在高分辨率生物深層組織成像中具有長遠的應用前景。美國離體多光子顯微鏡單分子成像定位