在預防性維護的應用中,振動是大型旋轉(zhuǎn)等設備即將發(fā)生故障的重要指標,一是由于在大型旋轉(zhuǎn)機械設備的所有故障中,振動問題出現(xiàn)的概率比較高;另一方面,振動信號包含了豐富的機械及運行的狀態(tài)信息;第三,振動信號易于拾取,便于在不影響機械運行的情況下實行在線監(jiān)測和診斷。旋轉(zhuǎn)類設備的預防性維護需要重點監(jiān)控振動量的變化。其預測性診斷技術對于制造業(yè)、風電等的行業(yè)的運維具有非常重大的意義。通過設備振動等狀態(tài)的預測性維護,可以及時發(fā)現(xiàn)并解決系統(tǒng)及零部件存在問題。但是對于一些不是因為設備問題而存在的固有振動,振動強度的不必要增加會對部件產(chǎn)生有害的力,危及設備的使用壽命和質(zhì)量。在這種情況下,則需要采用振動隔離技術來解決和干預,有效抑制振動和噪聲的危害,避免設備故障和流程關閉。盈蓓德科技可以提供更經(jīng)濟更可靠的旋轉(zhuǎn)設備健康狀態(tài)監(jiān)測方案。穩(wěn)定監(jiān)測公司
為了避免發(fā)生災難性電機故障的可能性,業(yè)界產(chǎn)生對開始退化的感應電機組件進行了早期狀態(tài)監(jiān)測和故障診斷的需求。狀態(tài)監(jiān)測可在其整個使用壽命期間對感應電機的各種部件進行持續(xù)評估。感應電機故障的早期診斷,對即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護和**短停機時間建議。電機故障監(jiān)測系統(tǒng),電機狀態(tài)檢測儀。電機故障監(jiān)測系統(tǒng)是采用現(xiàn)代電子技術和傳感器技術,對電動機運行過程中的各種參數(shù)進行實時在線檢測、分析、處理并作出相應報警或指示的裝置。其基本功能包括:1、對電動機的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據(jù)設定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現(xiàn)遠程控制。嘉興狀態(tài)監(jiān)測系統(tǒng)供應商β-Star監(jiān)測系統(tǒng)是盈蓓德智能科技有限公司的產(chǎn)品,為大型電機提供數(shù)據(jù)監(jiān)測和故障預判服務。
基于人工神經(jīng)網(wǎng)絡的診斷方法簡單處理單元***連接而成的復雜的非線性系統(tǒng),具有學習能力,自適應能力,非線性逼近能力等。故障診斷的任務從映射角度看就是從征兆到故障類型的映射。用ANN技術處理故障診斷問題,不僅能進行復雜故障診斷模式的識別,還能進行故障嚴重性評估和故障預測,由于ANN能自動獲取診斷知識,使診斷系統(tǒng)具有自適應能力。基于集成型智能系統(tǒng)的診斷方法隨著電機設備系統(tǒng)越來越復雜,依靠單一的故障診斷技術已難滿足復雜電機設備的故障診斷要求,因此上述各種診斷技術集成起來形成的集成智能診斷系統(tǒng)成為當前電機設備故障診斷研究的熱點。主要的集成技術有:基于規(guī)則的**系統(tǒng)與ANN的結(jié)合,模糊邏輯與ANN的結(jié)合,混沌理論與ANN的結(jié)合,模糊神經(jīng)網(wǎng)絡與**系統(tǒng)的結(jié)合。
隨著物聯(lián)網(wǎng)技術的發(fā)展,各類傳感器應運而生,通過給設備安裝傳感器、采集器等裝置,結(jié)合軟件采集,可以高效地實現(xiàn)設備狀態(tài)的自動采集,精細反應設備真實運行情況。現(xiàn)代設備大型化、高速化和自動化程度越來越高,為進一步了解設備運行的細節(jié),只監(jiān)測設備狀態(tài)就遠遠不夠,還需要監(jiān)測更多的設備運行參數(shù)。例如數(shù)控機床運行時的主軸負載、主軸轉(zhuǎn)速、進給倍率等,乃至主軸振動、溫度等參數(shù),以及報警信息等,如此才能***了解機床加工的細節(jié)情況,對于加工質(zhì)量的保障、設備維保等都具有重要的價值。數(shù)控機床一般通過數(shù)控系統(tǒng)進行控制,各類數(shù)控系統(tǒng)具有完善的通訊協(xié)議,通過軟件對接通訊協(xié)議,可以實現(xiàn)上述更多參數(shù)采集。滾動軸承是一個故障多發(fā)的零件,需要對其進行電機狀態(tài)監(jiān)測與故障診斷。
低信噪比微弱信號特征早期故障的信號處理。早期故障信息具有明顯的低信噪比微弱信號的特征,為實現(xiàn)早期故障有效分析,涉及方法包括:多傳感系統(tǒng)檢測及信息融合,非平穩(wěn)及非線性信號處理,故障征兆量和損傷征兆量信號分析,噪聲規(guī)律與特點分析,以及相關數(shù)據(jù)挖掘、盲源分離、粗糙集等方法。故障預測模型構建。構建基于智能信息系統(tǒng)的設備早期故障預測模型,這類模型大致有兩個途徑,分別是物理信息預測模型以及數(shù)據(jù)信息預測模型,或構建這兩類預測模型相融合的預測模型。運行狀態(tài)劣化的相關評價參數(shù)、模式及準則。如表征設備狀態(tài)發(fā)展的參數(shù)及特征模式,狀態(tài)發(fā)展評價準則及條件,面向安全保障的決策理論方法,穩(wěn)定性、可靠性及維修性評估依據(jù)及判據(jù)等。物聯(lián)網(wǎng)聲學監(jiān)控系統(tǒng)以音頻數(shù)據(jù)為**,輔以其他設備參數(shù),通過物聯(lián)網(wǎng)技術實現(xiàn)設備狀態(tài)的遠程感知,基于AI神經(jīng)網(wǎng)絡技術,計算并提取設備音頻特征,從而實現(xiàn)設備運行狀態(tài)的實時評估與故障的早期識別。幫助企業(yè)用戶提升生產(chǎn)效率,保證生產(chǎn)安全,優(yōu)化生產(chǎn)決策。 軸承的監(jiān)測和診斷方法主要是通過振動信號的時域和頻域信息來進行。上海監(jiān)測設備
有效的刀具監(jiān)測系統(tǒng)可大幅度提效率、提高工件尺寸精度和一致性、減少生產(chǎn)成本,實現(xiàn)數(shù)控加工自動化。穩(wěn)定監(jiān)測公司
目前設備狀態(tài)監(jiān)測及故障預警若干關鍵技術可歸納如下:(1)揭示設備運行狀態(tài)機械動態(tài)特性劣化演變規(guī)律。設備由非故障運行狀態(tài)劣化為故障運行狀態(tài),其機械動態(tài)特性通常有一個發(fā)展演變過程。需揭示劣化過程及故障變化演變規(guī)律及發(fā)展特點,分析故障產(chǎn)生機理、發(fā)展原因和發(fā)展模式,構建劣化演變機械動態(tài)特性模型。(2)提取設備運行狀態(tài)發(fā)展趨勢特征。在役設備往往具有復雜運行狀態(tài),在長歷程運行中工況和負載等非故障因素會造成信號能量變化,故障趨勢信息往往被非故障變化信息淹沒,需較大程度上消除非故障變化造成的冗余信息,進而構建預測模型。若提取到敏感特征分量因子及模式,有望實現(xiàn)典型部件及部位分析。穩(wěn)定監(jiān)測公司
上海盈蓓德智能科技有限公司坐落于上海市閔行區(qū)新龍路1333號28幢328室,是集設計、開發(fā)、生產(chǎn)、銷售、售后服務于一體,電工電氣的其他型企業(yè)。公司在行業(yè)內(nèi)發(fā)展多年,持續(xù)為用戶提供整套智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)的解決方案。公司主要經(jīng)營智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)等,我們始終堅持以可靠的產(chǎn)品質(zhì)量,良好的服務理念,優(yōu)惠的服務價格誠信和讓利于客戶,堅持用自己的服務去打動客戶。盈蓓德,西門子致力于開拓國內(nèi)市場,與電工電氣行業(yè)內(nèi)企業(yè)建立長期穩(wěn)定的伙伴關系,公司以產(chǎn)品質(zhì)量及良好的售后服務,獲得客戶及業(yè)內(nèi)的一致好評。上海盈蓓德智能科技有限公司本著先做人,后做事,誠信為本的態(tài)度,立志于為客戶提供智能在線監(jiān)診系統(tǒng),西門子Anovis,聲音與振動分析,主動減振降噪系統(tǒng)行業(yè)解決方案,節(jié)省客戶成本。歡迎新老客戶來電咨詢。