久久成人国产精品二三区,亚洲综合在线一区,国产成人久久一区二区三区,福利国产在线,福利电影一区,青青在线视频,日本韩国一级

南京旋轉(zhuǎn)機械監(jiān)測介紹

來源: 發(fā)布時間:2024-03-13

隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了大的應(yīng)用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。不同類型的電機在結(jié)構(gòu)和工作原理上可能有很大差異,監(jiān)測系統(tǒng)需要根據(jù)具體電機的特性進行定制。南京旋轉(zhuǎn)機械監(jiān)測介紹

南京旋轉(zhuǎn)機械監(jiān)測介紹,監(jiān)測

在數(shù)控機床中,刀具的監(jiān)測對于確保加工質(zhì)量和提高生產(chǎn)效率至關(guān)重要。刀具監(jiān)測主要包括刀具磨損監(jiān)測和刀具狀態(tài)監(jiān)測。刀具磨損監(jiān)測可以通過多種方法實現(xiàn),其中一種常用的方法是利用傳感器監(jiān)測切削過程中的物理參數(shù)變化,如切削力、振動和溫度等。當(dāng)?shù)毒吣p到一定程度時,這些物理參數(shù)會發(fā)生變化,通過監(jiān)測這些變化可以間接判斷刀具的磨損情況。此外,還可以采用直接監(jiān)測方法,如使用光學(xué)或觸覺傳感器直接觀察刀具的磨損情況。除了刀具磨損監(jiān)測,刀具狀態(tài)監(jiān)測也是數(shù)控機床中的重要環(huán)節(jié)。刀具狀態(tài)監(jiān)測可以通過實時監(jiān)測刀具的振動、聲音和溫度等參數(shù),結(jié)合數(shù)據(jù)驅(qū)動的算法構(gòu)建刀具狀態(tài)與這些參數(shù)之間的映射關(guān)系,從而實現(xiàn)對刀具狀態(tài)的準確監(jiān)測。這種方法可以幫助及時發(fā)現(xiàn)刀具的崩刃、破損和卷刃等失效形式,確保加工質(zhì)量和安全。總之,數(shù)控機床中的刀具監(jiān)測技術(shù)對于提高加工質(zhì)量和生產(chǎn)效率具有重要意義。通過實時監(jiān)測刀具的磨損和狀態(tài),可以及時發(fā)現(xiàn)并處理潛在問題,確保加工過程的穩(wěn)定性和可靠性。電力監(jiān)測數(shù)據(jù)振動監(jiān)測是應(yīng)用行之有效的方法之一。通過安裝振動傳感器并實時監(jiān)測設(shè)備的振動特征。

南京旋轉(zhuǎn)機械監(jiān)測介紹,監(jiān)測

現(xiàn)代電力系統(tǒng)中發(fā)電機單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機由于造價昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預(yù)警以防止事故發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進行分類、定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術(shù)可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預(yù)知”維修。

電機狀態(tài)監(jiān)測技術(shù)是一種綜合性的技術(shù),需要綜合運用各種監(jiān)測方法和手段,以實現(xiàn)對電機狀態(tài)的了解和掌握。通過電機狀態(tài)監(jiān)測技術(shù),可以及時發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率,降低維護成本,為企業(yè)創(chuàng)造更大的經(jīng)濟效益。還有一些基于數(shù)學(xué)模型和人工智能的故障診斷方法,如基于神經(jīng)網(wǎng)絡(luò)的故障診斷、基于支持向量機的故障診斷等。這些方法主要是利用電機的數(shù)學(xué)模型或歷史數(shù)據(jù),結(jié)合機器學(xué)習(xí)、深度學(xué)習(xí)等人工智能技術(shù),對電機的狀態(tài)進行估計和預(yù)測。電機狀態(tài)監(jiān)測是確保電機正常運行和延長其使用壽命的關(guān)鍵技術(shù)之一。通過綜合運用各種監(jiān)測方法和手段,可以及時發(fā)現(xiàn)并處理潛在問題,提高設(shè)備的可靠性和生產(chǎn)效率。同時,電機狀態(tài)監(jiān)測技術(shù)還可以為設(shè)備的預(yù)測性維護和優(yōu)化運行提供有力支持。使用絕緣監(jiān)測設(shè)備來檢測電機繞組和絕緣系統(tǒng)的健康狀況。絕緣降低可能導(dǎo)致繞組短路或絕緣擊穿。

南京旋轉(zhuǎn)機械監(jiān)測介紹,監(jiān)測

電力系統(tǒng)中發(fā)電機單機容量越大型發(fā)電機在電力生產(chǎn)中處于主力位置,同時大型發(fā)電機由于造價昂貴,結(jié)構(gòu)復(fù)雜,一旦遭受損壞,需要的檢修期長,因此要求有極高的運行可靠性。就我國目前今后很長一段時間內(nèi)的缺電、用電緊張的狀況而言,發(fā)電機的年運行小時數(shù)目和滿負荷率都較以往高出很多,備用容量很少的情況下,其運行可靠性顯得尤為重要和突出。因此對大型機組進行在線監(jiān)測與診斷,做到早期預(yù)警以防止事故的發(fā)生或擴大具有重要的現(xiàn)實意義。通常對發(fā)電機的“監(jiān)測”與“診斷”在內(nèi)容上并無明確的劃分界限,可以說監(jiān)測的數(shù)據(jù)和結(jié)果即為診斷的依據(jù)。監(jiān)測利用各種傳感器在電機運行時對電機的狀態(tài)提取相關(guān)數(shù)據(jù)。故障診斷使用計算機及其相應(yīng)智能軟件,根據(jù)傳感器提供的信息,對故障進行分類定位,確定故障的嚴重程度并提出處理意見。因此狀態(tài)監(jiān)測和故障診斷是一項工作的兩個部分,前者是后者的基礎(chǔ),后者是前者的分析與綜合。電機狀態(tài)監(jiān)測技術(shù)可幫助運行維護人員擺脫被動檢修和不太理想的定期檢修的困境,按照設(shè)備內(nèi)部實際的運行狀況,合理的安排檢修工作,實現(xiàn)所謂“預(yù)知”維修。這樣既可避免由于設(shè)備突然損壞,停止運行帶來的損失,又可充分發(fā)揮設(shè)備的作用。電機的運行狀態(tài)涉及多個參數(shù),包括振動、溫度、電流、電壓等。同時監(jiān)測和分析這些多參數(shù)復(fù)雜性是一個挑戰(zhàn)。無錫電機監(jiān)測數(shù)據(jù)

先進的電機監(jiān)測技術(shù),如基于數(shù)學(xué)模型和人工智能的故障診斷方法,可以實現(xiàn)對電機狀態(tài)的精確估計和預(yù)測。。南京旋轉(zhuǎn)機械監(jiān)測介紹

深度學(xué)習(xí)技術(shù)已經(jīng)在滾動軸承故障監(jiān)測和診斷領(lǐng)域取得了成功應(yīng)用, 但面對不停機情況下的早期故障在線監(jiān)測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發(fā), 提出了一種基于深度遷移學(xué)習(xí)的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡(luò), 通過構(gòu)建具有改進的比較大均值差異正則項和Laplace正則項的損失函數(shù), 在自適應(yīng)提取不同域數(shù)據(jù)的公共特征表示同時, 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報警閾值, 實現(xiàn)在線數(shù)據(jù)中異常序列的快速匹配, 同時提高在線檢測結(jié)果的可靠性. 在XJTU-SY數(shù)據(jù)集上的實驗結(jié)果表明, 與現(xiàn)有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數(shù).南京旋轉(zhuǎn)機械監(jiān)測介紹