深度學習技術(shù)已經(jīng)在滾動軸承故障監(jiān)測和診斷領(lǐng)域取得了成功應用, 但面對不停機情況下的早期故障在線監(jiān)測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發(fā), 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網(wǎng)絡, 通過構(gòu)建具有改進的比較大均值差異正則項和Laplace正則項的損失函數(shù), 在自適應提取不同域數(shù)據(jù)的公共特征表示同時, 提高正常狀態(tài)和早期故障狀態(tài)之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態(tài)的排列熵值構(gòu)建報警閾值, 實現(xiàn)在線數(shù)據(jù)中異常序列的快速匹配, 同時提高在線檢測結(jié)果的可靠性. 在XJTU-SY數(shù)據(jù)集上的實驗結(jié)果表明, 與現(xiàn)有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數(shù).隨著物聯(lián)網(wǎng)、大數(shù)據(jù)、人工智能等技術(shù)的不斷發(fā)展,電機監(jiān)測將實現(xiàn)更加智能化、自動化和準確化。杭州穩(wěn)定監(jiān)測特點
作為工業(yè)領(lǐng)域的一種關(guān)鍵旋轉(zhuǎn)設備,對于終端用來說,關(guān)于電機維護的主要是電氣班組的設備工程師、電機維護工程師、電機檢修人員等;對于電機廠家以及電機經(jīng)銷商來說,主要是電機售后服務工程師、電機銷售人員,會涉及到電機的運行維護;險此之外,還有第三方檢修人員等。目前已經(jīng)有很多智能產(chǎn)品號稱可以實現(xiàn)電機預測性維護,但問題非常多。1)傳感器安裝難。設備狀態(tài)監(jiān)測需要振動、噪聲、溫度傳感器,通訊協(xié)議并不統(tǒng)一,自成體系,安裝、使用、維護成本高昂。2)技術(shù)成本高。工業(yè)場景設備類型多,運行工況復雜,預測性維護算法涉及數(shù)據(jù)預處理、工業(yè)機理、機器學習,技術(shù)要求很高。3)時間成本高。預測性維護要實現(xiàn),前期需要大量歷史數(shù)據(jù)的支撐,數(shù)據(jù)采集、歸納、分析是一個漫長的過程。的電機智能運維,雖然被各大宣傳媒體提得很多,但還遠遠未到落地很好乃至普及的程度,不論是預測性維護的預測效果,還是電機的智能運維的市場推廣以及市場接受程度,對于電機運維來說,都還有很遠的一段距離!南京產(chǎn)品質(zhì)量監(jiān)測控制策略電機監(jiān)測是一項關(guān)鍵的技術(shù)活動,旨在確保電機的正常運行、優(yōu)化性能以及預防潛在故障。
刀具監(jiān)測技術(shù)主要可以分為兩大類:直接監(jiān)測方法和間接監(jiān)測方法。直接監(jiān)測方法通常是通過使用光學或觸覺傳感器直接觀察刀具的磨損情況。這種方法精度高,但必須進行停機檢測,時間成本較高,因此不適用于工業(yè)生產(chǎn)。間接監(jiān)測方法則是通過監(jiān)測與刀具磨損或破損密切相關(guān)的傳感器信號,如振動、切削力、電流功率和聲發(fā)射等,并利用建立的數(shù)學模型間接獲得刀具磨損量或刀具破損狀態(tài)。這種方法可以在機床加工過程中持續(xù)進行,不影響加工進度,因此更適用于在線監(jiān)測。其中,基于振動的監(jiān)測法是一種常用的間接監(jiān)測方法。切削過程中,振動信號包含豐富的與刀具狀態(tài)密切相關(guān)的信息。通過測量和分析振動信號,可以有效地監(jiān)測刀具的磨損和破損情況。此外,切削力監(jiān)測法也是一種常用的間接監(jiān)測方法。加工過程中,切削力會隨著刀具狀態(tài)的變化而改變,因此通過監(jiān)測切削力的變化也可以有效地判斷刀具的狀態(tài)??偟膩碚f,刀具監(jiān)測技術(shù)對于確保加工質(zhì)量和提高生產(chǎn)效率具有重要意義。在實際應用中,應根據(jù)具體的加工需求和條件選擇合適的監(jiān)測方法和技術(shù)。
隨著電力電子技術(shù)、自動化控制技術(shù)的不斷發(fā)展,電機在工業(yè)生產(chǎn)以及家用電器中得到了大的應用,在市場競爭中正逐步顯示自己的優(yōu)勢。傳統(tǒng)的電機在線監(jiān)測裝置多采用電流表、電壓表、功率表等較為原始的儀表來進行測量,采用人工讀數(shù)的方式進行數(shù)據(jù)的測量、記錄和分析,不僅硬件冗余,系統(tǒng)雜亂,而且操作極為不便,更有甚者,讀數(shù)誤差大,測試結(jié)果不準確。有些場合需要進行電機多種參數(shù)的監(jiān)測,這樣就勢必會加大各種測量儀器的使用以及人力資源的投入。傳統(tǒng)的監(jiān)測方法要求監(jiān)測人員具有較高的技能和水平,但是由于人為誤差的不可避免,這種監(jiān)測方法無法做定量分析,無法更加準確、實時的掌握電機的運行狀態(tài)和故障。技術(shù)實現(xiàn)要素:本發(fā)明提出了一種電機在線監(jiān)測裝置和方法,通過對扭矩、轉(zhuǎn)速、各相電流、電壓、溫度、輸入、輸出功率和效率進行實時動態(tài)的監(jiān)測以及對過電壓、過電流、過熱進行報警停機,解決現(xiàn)有技術(shù)中監(jiān)測參數(shù)不能定量分析以及無法更加準確、實時的掌握電機運行狀態(tài)和故障的技術(shù)問題。電機監(jiān)測涉及到對電機運行狀態(tài)的實時監(jiān)測和評估,以便及時發(fā)現(xiàn)潛在問題并采取適當?shù)木S護措施。
刀具監(jiān)測管理系統(tǒng)是我們基于精密加工行業(yè)特征,結(jié)合加工中心、車床等機械加工過程,打造的一款刀具狀態(tài)監(jiān)測和壽命預測分析系統(tǒng),通過采集主軸電流(負載)信號、位置信號、速度信號等30維度+數(shù)據(jù)信號,結(jié)合大數(shù)據(jù)流式處理、自然語言處理等自學習處理算法和行業(yè)多年經(jīng)驗數(shù)據(jù)沉淀,構(gòu)建一套完整的刀具壽命預測和狀態(tài)監(jiān)控管理系統(tǒng),能夠?qū)崿F(xiàn)100%斷刀和崩刃監(jiān)控,磨損監(jiān)控識別率達到99%以上,提供基于刀具狀態(tài)監(jiān)測和壽命預測的異常停機控制模塊,避免因刀具異常導致的產(chǎn)品質(zhì)量損失和異常撞機事故,幫助用戶節(jié)約刀具成本30%以上,100%避免刀具異常帶來的產(chǎn)品質(zhì)量損失,為用戶提供無憂機加工過程管理!利用數(shù)據(jù)分析和機器學習算法來分析狀態(tài)數(shù)據(jù),識別異常模式,并預測潛在故障。提高監(jiān)測的準確性和效率。南京監(jiān)測系統(tǒng)
監(jiān)測系統(tǒng)對這些數(shù)據(jù)進行分析,以檢測刀具是否出現(xiàn)異常磨損、斷刀等情況。杭州穩(wěn)定監(jiān)測特點
為了避免發(fā)生災難性電機故障的可能性,業(yè)界產(chǎn)生對開始退化的感應電機組件進行了早期狀態(tài)監(jiān)測和故障診斷的需求。狀態(tài)監(jiān)測可在其整個使用壽命期間對感應電機的各種部件進行持續(xù)評估。感應電機故障的早期診斷,對即將發(fā)生的故障提供足夠的警告,為企業(yè)提供基于狀態(tài)的維護和短暫停機的時間建議。電機故障監(jiān)測系統(tǒng),電機狀態(tài)檢測儀。電機故障監(jiān)測系統(tǒng)是采用現(xiàn)代電子技術(shù)和傳感器技術(shù),對電動機運行過程中的各種參數(shù)進行實時在線檢測、分析、處理并作出相應報警或指示的裝置?;竟δ馨ǎ?、對電動機的絕緣電阻、溫升等常規(guī)電氣參數(shù)和振動、噪聲等機械量進行測量;2、通過設定值比較法確定電機的實際工況;3、根據(jù)設定的報警閾值或動作時間發(fā)出聲光報警信號;4、通過通訊接口與plc或其它自動化設備相連實現(xiàn)遠程控制。杭州穩(wěn)定監(jiān)測特點