英國CNBio的PhysioMimix器官芯片可在一系列培養(yǎng)條件下進行先進的長時間體外肝臟培養(yǎng)以及進行不同階段NAFLD/NASH疾病模型的構建。此生理相關的實驗模型旨在幫助加速針對該慢性肝病的新療法研究的進程。使用器官芯片,我們已經開發(fā)出了一種完整的人類灌注體外NAFLD模型,利用3D培養(yǎng)的原代人肝細胞(PHH)來模仿肝臟的微體系結構。細胞使用高濃度的游離脂肪酸培養(yǎng)長達四周,以誘導細胞內甘油三酸酯(脂肪)累積并模仿肝脂肪變性。研究了該模型中細胞的CYP酶活性變化,以及對已知的肝毒性劑在IC:50濃度附近給藥時的影響。器官芯片問世的意義在于彌補了傳統的臨床前動物模型無法真實反映人體對藥物藥效和毒性的真實反映的空缺。人體類器官芯片的主要應用
已特別強調模仿腸肝相互作用,這對于預測藥物的排布,功效,毒性以及闡明病理生理機制至關重要。在英國CN-Bio的Physiomimix的腸道器官芯片模型T6 MPS中已實現一定程度的腸胃交流模擬,這是由腸介導的肝臟CYP7A1(膽汁酸合成的關鍵酶)抑制所證實的。包含多種單元類型的互連器官芯片MPS可以幫助填補ADME譜的空白。例如,可以通過結合對腸道通透性,肝代謝,藥物載體,載體蛋白和外排/流入膜泵的研究結果,間接獲得有關藥物分布的數據。 肝臟類器官芯片網器官芯片因在預測人體對新型藥物反應的建模、測試等方面的極大前景,逐漸成為科研界的研究熱點。
器官芯片技術被提出來模擬心血管系統的動態(tài)條件,特別是心臟和一般血管系統。這些系統特別注意模仿結構組織、剪切應力、跨壁壓力、機械拉伸和電刺激。心臟和血管芯片平臺已經成功生成,用于研究各種生理現象、疾病模型和探索藥物的作用。器官芯片在生理、機械和結構上與模擬器guan相似的支架上容納活ti人體細胞。藥物或病毒通過模擬體內血液流動的管子通過細胞。測試中使用的活細胞在芯片上的壽命比傳統實驗室方法長得多,并且與傳統使用的模型系統相比,需要更低的感ran劑量。
微物理系統(MPS)又稱OrganonChip(OOC)、器官芯片,旨在表征人體組織的結構和功能特征。與傳統的二維平皿細胞培養(yǎng)相比,MPS可以利用多種細胞類型,在三維支架中培養(yǎng),在灌注狀態(tài)下模擬組織中的血流。它們可用于臨床前藥物吸收、分布、代謝和排泄(ADME)研究,以獲得相關的人體數據,并有助于告知劑量方案和有效藥物濃度等參數。MPS包含一系列平臺,這些平臺通過使用微工程技術(通常與3D微環(huán)境結合使用)來模仿組織功能的各個方面。此類系統已報告為3D球體,類器guan,器官芯片,靜態(tài)微圖案技術和非物理芯片模型。全球器官芯片市場分為北美、歐洲、亞太、南美、中東和非洲。
CN-Bio使得器官芯片在藥物研發(fā)的一系列流程中得以應用,從早期的靶點開發(fā)一直到支持臨床前開發(fā)。比如可以用于疾病建模,早期研發(fā),鑒定新的藥靶,理解疾病進展的機制。同樣的疾病模型還可用于支持臨床開發(fā)以及非正式的臨床設計。在CN-Bio,我們研發(fā)了先進的HBV和代謝性肝臟疾病模型。在DMPK中,CN-Bio的器官芯片被用于鑒定化合物的代謝,并且在未來多器g系統,比如器g間交流,比如肝腸模型,將被用于更高等級的轉化。我們很快今年年初除了一款肝-腸模型芯片TL6,后面我們將討論相關細節(jié)。 前沿的器官芯片技術,將在未來5年釋放巨大的應用空間。類器官芯片品牌比較
如何選擇器官芯片系統?人體類器官芯片的主要應用
生理相關性一直是原代細胞和干細胞在體外檢測中應用的驅動力。英國CNBio的PhysioMimix能夠快速輕松地創(chuàng)建3D組織模擬物與自動化控制微流體,用于長期細胞培養(yǎng),產生信息豐富的分析。選擇正確的細胞是實驗成功的關鍵。維持細胞表型對于研究復雜的生物過程,自分泌/旁分泌因子,以及對病原體和外來生物的反應至關重要。靜態(tài)組織培養(yǎng)不能準確地再現疾??;器官芯片提供的灌注系統是提供藥物、化學物質或其他物質毒性和療效的準確指示,以及詳細的藥代動力學曲線以指導進一步研究的必要條件。人體類器官芯片的主要應用
上海曼博生物醫(yī)藥科技有限公司是一家貿易型類企業(yè),積極探索行業(yè)發(fā)展,努力實現產品創(chuàng)新。公司致力于為客戶提供安全、質量有保證的良好產品及服務,是一家有限責任公司企業(yè)。公司擁有專業(yè)的技術團隊,具有血小板裂解液,WB自動孵育系統,微流控器官芯片,藍牙無線標簽機等多項業(yè)務。曼博生物順應時代發(fā)展和市場需求,通過**技術,力圖保證高規(guī)格高質量的血小板裂解液,WB自動孵育系統,微流控器官芯片,藍牙無線標簽機。